Skip to main content
Log in

Pluripotent stem cells exhibiting similar characteristics can be isolated from human fetal bone marrow, heart, liver, muscle, lung, derma, kidney, and fat

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Previously, we reported that a cell population derived from human fetal bone marrow (BM), termed here Flk1+CD34 postembryonic pluripotent stem cells (PPSCs) that have the characteristics of mesenchymal stem cells (MSCs), could differentiate into ectodermal, endodermal and mesodermal cell types at the single cell level in vitro, and that these cells could also differentiate into the epithelium of liver, lung, gut, as well as the hematopoietic and endothelial lineages after transplantion into irradiated non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. In this study, we further isolated pluripotent stem cells from human fetal heart, liver, muscle, lung, derma, kidney, and fat and then analyzed the characteristics and function of these stem cells. It was found that the phenotype of the culture-expanded pluripotent stem cells from different fetal tissues was similar to BM-derived Flk1+CD34 PPSCs, i.e. Flk1 and CD44 positive, GlyA, CD34, CD45, class I-HLA and HLA-DR negative. Morphologically, these cells were fibroblast-like and the doubling time was about 30 h. More importantly, culture-expanded pluripotent stem cells from all these fetal tissues were able to differentiate into cells with morphologic and phenotypic characteristics of adipocytes, osteocytes, neurons, glial cells and hepatocytes. These pluripotent stem cells with characteristics similar to fetal BM-derived Flk1+CD34 PPSCs can be selected and cultured from tissues other than the BM. This phenomenon may help explain the “stem cell plasticity” found in multiple human tissues. In addition, as fetal BM-derived Flk1 + CD34 PPSCs, these pluripotent stem cells from different fetal tissues had the capacity for self-renewal and multi-lineage differentiation even after being expanded for more than 40 population doublings in vitro. Thus, they may be an ideal source of stem cells for treatment of inherited or degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang B, Liao L, Shi M, Yang S, Zhao R C. Identification of Flk1+CD34 pluripotent stem cells derived from human fetal bone marrow. J Lab Clin Med, 2004, 143(4):230–240

    Article  CAS  PubMed  Google Scholar 

  2. Guo H, Fang B, Liao L, Zhao Z, Liu J, Chen H, Hsu S H, Cui Q, Zhao R C. Hemangioblastic characteristics of fetal bone marrow-derived Flk1(+)CD31−CD34(−) cells. Exp Hematol, 2003, 31(7):650–658

    Article  CAS  PubMed  Google Scholar 

  3. Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao R C. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31−/CD34− Progenitors. J Hematother Stem Cell Res, 2003, 12(6):603–613

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, Zhao R C. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med, 2003, 141(5):342–349

    Article  CAS  PubMed  Google Scholar 

  5. Gussoni E, Soneoka Y, Strickland C D, Buzney E A, Khan M K, Flint A F, Kunkel L M, Mulligan R C. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999, 23401(6751):390–394

    Google Scholar 

  6. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Weisdorf D J, Solovey A, Hebbel R P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest, 2000, 105(1):71–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A, 2001, 98(18):10344–10349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Goodell M A, Jackson K A, Majka S M, Mi T, Wang H, Pocius J, Hartley C J, Majesky M W, Entman M L, Michael L H, Hirschi K K. Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci, 2001, 938:208–218; discussion 218–220

    Article  CAS  PubMed  Google Scholar 

  10. Theise N D, Badve S, Saxena R, Henegariu O, Sell S, Crawford J M, Krause D S. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000, 31(1):235–240

    Article  CAS  PubMed  Google Scholar 

  11. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman I L, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000, 6(11):1229–1234

    Article  CAS  PubMed  Google Scholar 

  12. Noort W A, Kruisselbrink A B, in’t Anker P S, Kruger M, van Bezooijen R L, de Paus R A, Heemskerk M H, Lowik C W, Falkenburg J H, Willemze R, Fibbe W E. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol, 2002, 30(8):870–878

    Article  PubMed  Google Scholar 

  13. Campagnoli C, Roberts I A, Kumar S, Bennett P R, Bellantuono I, Fisk N M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98(8):2396–2402

    Article  CAS  PubMed  Google Scholar 

  14. Zuk P A, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P, Hedrick M H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

  15. de Bari C, Dell’Accio F, Tylzanowski P, Luyten F P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44(8):1928–1942

    Article  PubMed  Google Scholar 

  16. Erices A, Conget P, Minguell J J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000, 109(1):235–242

    Article  CAS  PubMed  Google Scholar 

  17. Clarke D L, Johansson C B, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J. Generalized potential of adult neural stem cells. Science, 2000, 288(5471):1660–1663

    Article  CAS  PubMed  Google Scholar 

  18. Watt F M, Hogan B L. Out of Eden: stem cells and their niches. Science, 2000, 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  19. McKay R. Stem cells—hype and hope. Nature, 2000, 406(6794):361–364

    Article  PubMed  Google Scholar 

  20. Schwartz R E, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu W S, Verfaillie C M. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10):1291–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y, Teramoto K, Arii S, Sato C, Takase K, Yasumizu T, Teraoka H. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells, 2003, 21(2):217–227

    Article  PubMed  Google Scholar 

  22. Jiang Y, Jahagirdar B N, Reinhardt R L, Schwartz R E, Keene C D, Ortiz-Gonzalez X R, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low W C, Largaespada D A, Verfaillie C M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  23. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz D M, Nakano Y, Meyer E M, Morel L, Petersen B E, Scott E W. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002, 416(6880):542–545

    Article  CAS  PubMed  Google Scholar 

  24. Ying Q L, Nichols J, Evans E P, Smith A G. Changing potency by spontaneous fusion. Nature, 2002, 416(6880):545–548

    Article  CAS  PubMed  Google Scholar 

  25. Spees J L, Olson S D, Ylostalo J, Lynch P J, Smith J, Perry A, Peister A, Wang M Y, Prockop D J. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA, 2003, 100(5):2397–2402

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003, 422(6934):897–901

    Article  CAS  PubMed  Google Scholar 

  27. Vassilopoulos G, Wang P R, Russell D W. Transplanted bone marrow regenerates liver by cell fusion. Nature, 2003, 422(6934):901–904

    Article  CAS  PubMed  Google Scholar 

  28. Galli R, Borello U, Gritti A, Minasi M G, Bjornson C, Coletta M, Mora M, de Angelis M G, Fiocco R, Cossu G, Vescovi A L. Skeletal myogenic potential of human and mouse neural stem cells. Natl Neurosci, 2000, 3(10):986–991

    Article  CAS  Google Scholar 

  29. Rietze R L, Valcanis H, Brooker G F, Thomas T, Voss A K, Bartlett P F. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature, 2001, 412(6848):736–739

    Article  CAS  PubMed  Google Scholar 

  30. Ianus A, Holz G G, Theise N D, Hussain M A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest, 2003, 111(6):843–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001, 98(9):2615–2625

    Article  CAS  PubMed  Google Scholar 

  32. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P H, Verfaillie C M. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109(3):337–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yongping MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, B., Song, Y., Zhao, C. et al. Pluripotent stem cells exhibiting similar characteristics can be isolated from human fetal bone marrow, heart, liver, muscle, lung, derma, kidney, and fat. Front. Med. China 1, 185–191 (2007). https://doi.org/10.1007/s11684-007-0035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-007-0035-1

Keywords

Navigation