Skip to main content
Log in

Expression and bioinformatic analysis of lymphoma-associated novel gene KIAA0372

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore the differentially expressed genes in lymph-node cells (LNC) of lymphomas and reactive lymph node hyperplasia, and to perform an initial bioinformatic analysis on a novel gene, KIAA0372, which is highly expressed in the LNC of lymphomas. mRNA extracted from LNC of lymphomas and reactive lymph node hyperplasia were respectively marked with biotin and hybridized with Gene Expression Chips, resulting in differentially expressed genes. Initial bioinformatic analysis was then performed on a novel gene named KIAA0372, whose function has not yet been explored. Its structure and genomic location, its product’s physical and chemical properties, subcellular localization and functional domains, were also predicted. Further, a systematic evolution analysis was performed on similar proteins from among several species. Using Gene Expression Chips, many differentially expressed genes were uncovered. Efficient bioinformatic analysis has fundamentally determined that KIAA0372 is an extracellular protein which may be involved in TGF-β signaling. Microarray is an efficient and high throughput strategy for detection of differentially expressed genes. And KIAA0372 is thought to be a potential target for tumor research using bioinformatic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrnitage J O, Weisenburger D D. New approach to classifying non hodgikin’s lymphomas clinical features of the major histologic subtypes. Non Hodgkin’s Lymphoma Classification Project. J Clin Ocol, 1998, 16(8): 2780–2795

    Google Scholar 

  2. Rogers B B. Overview of non-Hodgkin’s lymphoma. Semin Oncol Nurs, 2006, 22(2): 67–72

    Article  PubMed  Google Scholar 

  3. Alizadeh AA, Eisen M B, Davis RE, Ma C, Lossos I S, Rosenwald A, Boldrick J C, Sabet H, Tran T, Yu X, Powell J I, Yang L, Marti G E, Moore T, Hudson J Jr, Lu L, Lewis D B, Tibshirani R, Sherlock G, Chan W C, Greiner T C, Weisenburger D D, Armitage J O, Wamke R, Levy R, Wilson W, Grever M R, Byrd J C, Botstein D, Brown P O, Staudt L M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769): 503–511

    Article  CAS  PubMed  Google Scholar 

  4. Colomo L, Lopez-Guillermo A, Perales M, Rives S, Martinez A, Bosch F, Colomer D, Falini B, Montserrat E, Campo E. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood, 2003, 101(1): 78–84

    Article  CAS  PubMed  Google Scholar 

  5. Catalano A, Iland H. Molecular biology of lymphoma in the Microarray era. Pathology, 2005, 37(6): 508–522

    Article  CAS  PubMed  Google Scholar 

  6. Ishii M, Hashimoto S, Tsutsumi S, Wada Y, Matsushima K, Kodama T, Aburatani H. Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics, 2000, 68(2): 136–143

    Article  CAS  PubMed  Google Scholar 

  7. Yang G P, Ross D T, Kuang W W, Brown P O, Weigel R J. Combining SSH and cDNA Microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res, 1999, 27(6): 1517–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Buckanovich R J, Sasaroli D, O’brien-Jenkins A, Botbyl J, Conejo-Garcia J R, Benencia F, Liotta L A, Gimotty P A, Coukos G. Use of Immuno-LCM to Identify the in situ Expression Profile of Cellular Constituents of the Tumor Microenvironment. Cancer Biol Ther, 2006, 5(6): 635–642

    Article  CAS  PubMed  Google Scholar 

  9. Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O. Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res, 1997, 4(2): 141–150

    Article  CAS  PubMed  Google Scholar 

  10. Strausberg R L, Feingold E A, Grouse L H, Derge J G, Klausner R D, Collins F S, Wagner L, Shenmen C M, Schuler G D, Altschul S F, Zeeberg B, Buetow K H, Schaefer C F, Bhat N K, Hopkins R F, Jordan H, Moore T, Max S I, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer A A, Rubin G M, Hong L, Stapleton M, Soares M B, Bonaldo M F, Casavant T L, Scheetz T E, Brownstein M J, Usdin B, Toshiyuki S, Caminci P, Prange C, Raha S S, Loquellano N A, Peters G J, Abramson R D, Mullahy S J, Bosak S A, McEwan P J, McKernan K J, Malek J A, Gunaratne P H, Richards S, Worley K C, Hale S, Garcia A M, Gay L J, Hulyk S W, Villalon D K, Muzny D M, Sodergren E J, Lu X, Gibbs R A, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young A C, Shevchenko Y, Bouffard G G, Blakesley R W, Touchman J W, Green E D, Dickson M C, Rodriguez A C, Grimwood J, Schmutz J, Myers R M, Butterfield Y S, Krzywinski M I, Skalska U, Smailus D E, Schnerch A, Schein J E, Jones S J, Marra M A. Mammalian Gene Collection Program Team. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A, 2002, 99(26): 16899–16903

    Article  PubMed  Google Scholar 

  11. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol, 2000, 7(1–2): 203–214

    Article  CAS  PubMed  Google Scholar 

  12. Apweiler R, Attwood T K, Bairoch A, Bateman A, Bimey E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning M D, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder N J, Oinn T M, Pagni M, Servant F, Sigrist C J, Zdobnov E M. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res, 2001, 29(1): 37–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides. SignalP 3.0. J Mol Biol, 2004, 340(4): 783–795

    Article  PubMed  Google Scholar 

  14. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin D M, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter W N, Aasland R, Gibson T J. ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res, 2003, 31(13): 3625–3630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol, 1998, 6: 122–130

    CAS  PubMed  Google Scholar 

  16. Cheng G, Tian F, Li Y. The selection of taxol resistance associated genes in ovarian cancer cell line by mRNA DD. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2000, 80(7): 541–543

    CAS  Google Scholar 

  17. Zhu T, Wu M F, Zhou J H, Li H Y, Xu G, Lu Y P, Ma D. Bioinformatic analysis of SFT2D1—a highly expressed gene in hepatic metastasis of ovarian cancer. BioMegnetism, 2005, 5(4): 1–5

    CAS  Google Scholar 

  18. Yang M X, Qu X, Han K J, Feng J B, Chen W F. Application of bioinformatics in analysis of human gene HCA 56. Basic and Clinical Medicine, 2005, 25(2): 169–172

    Google Scholar 

  19. D’Andrea L D, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci, 2003, 28(12): 655–662

    Article  PubMed  Google Scholar 

  20. Smith D F. Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones, 2004, 9(2): 109–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Luscher B, Larsson L G. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene, 1999, 18(19): 2955–2966

    Article  CAS  PubMed  Google Scholar 

  22. Hagerman P J. Do basic region-leucine zipper proteins bend their DNA targets ... does it matter?. Proc Natl Acad Sci U S A 1996, 93(19): 9993–9996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier J M. Functional proteomics mapping of a human signaling pathway. Genome Res, 2004, 14(7): 1324–1332

    Article  CAS  PubMed  Google Scholar 

  24. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene, 2005, 24(37): 5742–5750

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685–700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Ding PhD MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Tang, D., Zhu, T. et al. Expression and bioinformatic analysis of lymphoma-associated novel gene KIAA0372. Front. Med. China 1, 93–98 (2007). https://doi.org/10.1007/s11684-007-0018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-007-0018-2

Keywords

Navigation