Skip to main content
Log in

Ultravlolet-B induced expression of hypoxia-inducible factor 1α, transferrin receptor through EGFR/PI3K/AKT/DEC1 pathway

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The aim of this research was to explore the effects and signaling pathway of ultraviolet-B (UVB) irradiation on the expression of hypoxia-inducible factor 1α (HIF-1α) and transferrin receptor (TfR). HIF-1α protein was measured by Western blot method. Expressions of epidermal growth factor receptor (EGFR), phosphor-EGF-R and TfR after UVB irradiation were determined with flow cytometry. After UVB irradiation, mRNA levels of HIF-1α and TfR were detected by real time-PCR. Results showed that compared with control groups, UVB was able to induce HIF1α and TfR protein expression in a dose-and time-dependent manner in HaCat cells (P < 0.05). TfR mRNA was expressed in a dose-dependent manner and reached a peak at the 8th hour in HaCat cells (P < 0.05) whereas HIF-1α mRNA expression was not affected by UVB treatment (P>0.05). The EGFR/PI3K/AKT signaling pathway was required for the induction of HIF-1α and TfR expression induced by UVB. UVB induced activation of EGFR in HaCat cells and EGFR regulated expression of TfR and HIF-1α. EGFR (−/−) MEF did not increase the HIF1 expression following UVB irradiation (P>0.05). In contrast, EGFR (+/+) MEF strongly enhanced HIF1α expression after UVB irradiation (P < 0.05). PD153035, a selective inhibitor of EGFR tyrosine kinase, inhibited the TfR protein expression in UVB-treated cells in a dose-dependent manner (P < 0.05). PI3K inhibitors, LY294002 and wortmannin, inhibited HIF-1α and TfR expressions induced by UVB (P < 0.05). The DEC1 (−/−) HaCat cells did not increase their TfR and HIF-1α expressions following UVB irradiation (P>0.05). In contrast, DEC1 (+/+) HaCat cells strongly enhanced TfR and HIF-1α protein expression after UVB irradiation (P < 0.05). We conclude that UVB induces TfR and HIF-1α expressions via EGFR/PI3K/AKT/DEC1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epstein J H. Photocarcinogenesis, skin cancer, and aging. J Am Acad Dermatol, 1983, 9(4): 487–502

    Article  CAS  PubMed  Google Scholar 

  2. Fisher G J, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees J J. Mechanisms of photoaging and chronological skin aging. Arch Dermatol, 2002, 138(11): 1462–1470

    Article  CAS  PubMed  Google Scholar 

  3. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T. UV-induced skin damage. Toxicology, 2003, 189(1–2): 21–39

    Article  CAS  PubMed  Google Scholar 

  4. de Gruijl F R. p53 mutations as a marker of skin cancer risk: comparison of UVA and UVB effects. Exp Dermatol, 2002, 11Suppl 1: 37–39

    Article  PubMed  Google Scholar 

  5. Miller C C, Hale P, Pentland A P. Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation. J Biol Chem, 1994, 269(5): 3529–3533

    CAS  PubMed  Google Scholar 

  6. Wan Y S, Wang Z Q, Shao Y, Voorhees J J, Fisher G J. Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int J Oncol, 2001, 18(3): 461–466

    CAS  PubMed  Google Scholar 

  7. Zhang Q S, Maddock D A, Chen J P, Heo S, Chiu C, Lai D, Souza K, Mehta S, Wan Y S. Cytokine-induced p38 activation feedback regulates the prolonged activation of AKT cell survival pathway initiated by reactive oxygen species in response to UV irradiation in human keratinocytes. Int J Oncol, 2001, 19(5): 1057–1061

    CAS  PubMed  Google Scholar 

  8. Hess A R, Seftor E A, Seftor, R E, Hendrix M J. Phosphoinositide 3-Kinase Regulates Membrane Type 1-Matrix Metalloproteinase (MMP) and MMP-2 Activity during Melanoma Cell Vasculogenic Mimicry. Cancer Res, 2003, 63(16): 4757–4762

    CAS  PubMed  Google Scholar 

  9. Youn J I, Gange R W, Maytum D, Parrish J A. Effect of hypoxia on sunburn cell formation and inflammation induced by ultraviolet radiation. Photodermatol, 1988, 5(6): 252–256

    CAS  PubMed  Google Scholar 

  10. Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G. Transferrin receptor induction by hypoxia HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem, 1999, 274(34): 24142–24146

    Article  CAS  PubMed  Google Scholar 

  11. Jiang B H, Rue E, Wang G L, Roe R, Semenza G L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem, 1996, 271(30): 17771–17778

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman E C, Reyes H, Chu F F, Sander F, Conley L H, Brooks B A, Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science, 1991, 252(5008): 954–958

    Article  CAS  PubMed  Google Scholar 

  13. Forsythe J A, Jiang B H, Iyer N V, Agani F, Leung S W, Koos R D, Semenza G L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 1996, 16(9): 4604–4613

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee P J, Jiang B H, Chin B Y, Iyer N V, Alarn J, Semenza G L, Choi A M. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem, 1997, 272(9): 5375–5381

    Article  CAS  PubMed  Google Scholar 

  15. Semenza G L, Jiang B H, Leung S W, Passangtino R, Concordet J P, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 1996, 271(51): 32529–32537

    Article  CAS  PubMed  Google Scholar 

  16. Semenza G L, Agani F, Booth G, Forsythe J, Iyer N, Jiang B H, Leung S, Roe R, Wiener C, Yu A. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int, 1997, 51(2): 553–555

    Article  CAS  PubMed  Google Scholar 

  17. Maxwell P H, Dachs G U, Gleadle J M, Nicholls L G, Harris A L, Stratford I J, Hankinson O, Pugh C W, Ratcliffe P J. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA, 1997, 94(15): 8104–8109

    Article  CAS  PubMed  Google Scholar 

  18. Zhong H, De Marzo A M, Laughner E, Lim M, Hilton D A, Zagzag D, Buechler P, Isaacs W B, Semenza G L, Simons J W. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999, 59(22): 5830–5835

    CAS  PubMed  Google Scholar 

  19. Jiang B H, Jiang G, Zheng J Z, Lu Z, Hunter T, Vogt P K. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ, 2001, 12(7): 363–369

    CAS  PubMed  Google Scholar 

  20. Minet E, Amould T, Michel G, Roland I, Mottet D, Raes M, Remacle J, Michiels C. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett, 2000, 468(1): 53–58

    Article  CAS  PubMed  Google Scholar 

  21. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu M M, Simons J W, Semenza G L. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 2000, 60(6): 1541–1545

    CAS  PubMed  Google Scholar 

  22. Tanaka N, Sugihara K, Odajima T, Mimura M, Kimijima Y, Ichinose S. Oral squamous cell carcinoma: electron microscopic and immunohistochemical characteristics. Med Electron Microse, 2002, 35(3): 127–138

    Article  CAS  Google Scholar 

  23. Shinohara H, Fan D, Ozawa S, Yano S, Van Arsdell M, Viner J L, Beers R, Pastan I, Fidler I J. Site-specific expression of transferrin receptor by human colon cancer cells directly correlates with eradication by antitransferrin recombinant immunotoxin. Int J Oncol, 2000, 17(4): 643–645

    CAS  PubMed  Google Scholar 

  24. Kemp J D. Iron deprivation and cancer: a view beginning with studies of monoclonal antibodies against the transferrin receptor. Histol Histopathol, 1997, 12(1): 291–296

    CAS  PubMed  Google Scholar 

  25. Yamada K, Miyamoto K. Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3, their gene expressions are regulated by multiple extracellular stimuli. Front Biosci, 2005, 10: 3151–3171

    Article  CAS  PubMed  Google Scholar 

  26. Shen M, Kawamoto T, Teramoto M, Makihira S, Fujimoto K, Yan W, Noshiro M, Kato Y. Induction of basic helix-loop-helix protein DEC1 (BHLHB2)/Stra13/Sharp2 in response to the cyclic adenosine monophosphate pathway. Eur J Cell Biol, 2001, 80(5): 329–334

    Article  CAS  PubMed  Google Scholar 

  27. Wang H Q, Smart R C. Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion. J Cell Sci, 1999, 112(Pt 20): 3497–3506

    CAS  PubMed  Google Scholar 

  28. Kallio P J, Wilson W J, O’Brien S, Makino Y, Poellinger L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem, 1999, 274(10): 6519–6525

    Article  CAS  PubMed  Google Scholar 

  29. Sandau K B, Fandrey J, Brune B. Accumulation of HIF-1alpha under the influence of nitric oxide. Blood, 2001, 97(4): 1009–1015

    Article  CAS  PubMed  Google Scholar 

  30. Cockman M E, Masson N, Mole D R, Jaakkola P, Chang G W, Clifford S C, Maher E R, Pugh C W, Ratcliffe P J, Maxwell P H. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem, 2000, 275(33): 25733–25741

    Article  CAS  PubMed  Google Scholar 

  31. Ryschich E, Huszty G, Knaebel H P, Hartel M, Buchler M W, Schmidt J. Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer, 2004, 40(9): 1418–1422

    Article  CAS  PubMed  Google Scholar 

  32. Bruick R K, McKnight S L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001, 294(5545): 1337–1340

    Article  CAS  PubMed  Google Scholar 

  33. Khatua S, Peterson K M, Brown K M, Lawlor C, Santi M R, LaFleur B, Dressman D, Stephan D A, MacDonald T J. Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res, 2003, 63(8): 1865–1870

    CAS  PubMed  Google Scholar 

  34. Pili R, Donehower R C. Is HIF-1 alpha a valid therapeutic target? J Natl Cancer Inst, 2003, 95(7): 498–499.

    Article  PubMed  Google Scholar 

  35. Yeo E J, Chun Y S, Cho Y S, Kim J, Lee J C, Kim M S, Park J W. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst, 2003, 95(7): 516–525

    Article  CAS  PubMed  Google Scholar 

  36. Fujimoto K, Shen M, Noshiro M, Matsubara K, Shingu S, Honda K, Yoshida E, Suardita K, Matsuda Y, Kato Y. Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins. Biochem Biophys Res Commun, 2001, 280(1): 164–171

    Article  CAS  PubMed  Google Scholar 

  37. Shen M, Kawamoto T, Yan W, Nakamasu K, Tamagami M, Koyano Y, Noshiro M, Kato Y. Molecular characterization of the novel basichlelix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun, 1997, 236(2): 294–298

    Article  CAS  PubMed  Google Scholar 

  38. Ivanova A V, Ivanov S V, Danilkovitch-Miagkova A, Lerman M I. Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem, 2001, 276(18): 15306–15315

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Zhang H, Xie M, Hu M, Ge S, Yang D, Wan Y, Yan B. Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation. Biochem J, 2002, 367(Pt 2): 413–422

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Xie M, Song X, Gragen S, Sachdeva K, Wan Y, Yan B. DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. J Biol Chem, 2003, 278(19): 16899–16907

    Article  CAS  PubMed  Google Scholar 

  41. Giatromanolaki A, Koukourakis M I, Sivridis E, Turley H, Wykoff C C, Gatter K C, Harris A L DEC1 (STRA13) protein expression relates to hypoxia-inducible factor 1-alpha and carbonic anhydrase-9 overexpression in non-small cell lung cancer. J Pathol, 2003, 200(2): 222–228

    Article  CAS  PubMed  Google Scholar 

  42. Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J Biol Chem, 2002, 277(49): 47014–47021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Bi, Z. Ultravlolet-B induced expression of hypoxia-inducible factor 1α, transferrin receptor through EGFR/PI3K/AKT/DEC1 pathway. Front. Med. China 1, 79–86 (2007). https://doi.org/10.1007/s11684-007-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-007-0016-4

Keywords

Navigation