Skip to main content
Log in

Intersubject representational similarity analysis uncovers the impact of state anxiety on brain activation patterns in the human extrastriate cortex

  • Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The current study used functional magnetic resonance imaging (fMRI) and showed that state anxiety modulated extrastriate cortex activity in response to emotionally-charged visual images. State anxiety and neuroimaging data from 53 individuals were subjected to an intersubject representational similarity analysis (ISRSA), wherein the geometries between neural and behavioral data were compared. This analysis identified the extrastriate cortex (fusiform gyrus and area MT) to be the sole regions whose activity patterns covaried with state anxiety. Importantly, we show that this brain-behavior association is revealed when treating state anxiety data as a multidimensional response pattern, rather than a single composite score. This suggests that ISRSA using multivariate distances may be more sensitive in identifying the shared geometries between self-report questionnaires and brain imaging data. Overall, our findings demonstrate that a transient state of anxiety may influence how visual information – especially those relevant to the valence dimension – is processed in the extrastriate cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The fMRI data used to perform the analysis in the paper is available at Neurovault (https://neurovault.org/collections/16284/).

Code availability

The code and data used to perform the analysis in the paper are available on GitHub (https://github.com/CHEN-lab-NTU/state_anxiety_ISRSA).

References

  • Bishop, S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends in cognitive sciences, 11(7), 307–316.

    Article  PubMed  Google Scholar 

  • Bishop, S. J., Duncan, J., & Lawrence, A. D. (2004). State anxiety modulation of the amygdala response to unattended threat-related stimuli. The Journal of Neuroscience, 24(46), 10364–10368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carretié, L., Fernández-Folgueiras, U., Álvarez, F., Cipriani, G. A., Tapia, M., & Kessel, D. (2022). Fast unconscious processing of emotional stimuli in early stages of the visual cortex. Cerebral Cortex, 32(19), 4331–4344.

    Article  PubMed  Google Scholar 

  • Cataldo, A. M., & Cohen, A. L. (2015). The effect of emotional state on visual detection: A signal detection analysis. Emotion, 15(6), 846–853.

    Article  PubMed  Google Scholar 

  • Chang, L., Jolly, E., Cheong, J. H., Burnashev, A., & Chen, P. H. A. (2018). cosanlab/nltools: 0.3.11. https://doi.org/10.5281/zenodo.2229813

  • Chang, L. J., Jolly, E., Cheong, J. H., Rapuano, K. M., Greenstein, N., Chen, P. H. A., & Manning, J. R. (2021). Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. Science Advances, 7(17), eabf7129.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen, G., Shin, Y. W., Taylor, P. A., Glen, D. R., Reynolds, R. C., Israel, R. B., & Cox, R. W. (2016). Untangling the relatedness among correlations, part I: Nonparametric approaches to inter-subject correlation analysis at the group level. NeuroImage, 142, 248–259.

    Article  PubMed  Google Scholar 

  • Chen, P. H. A., Jolly, E., Cheong, J. H., & Chang, L. J. (2020). Intersubject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage, 216, 116851.

    Article  PubMed  Google Scholar 

  • Chen, P. H. A., & Qu, Y. (2021). Taking a computational cultural neuroscience approach to study parent-child similarities in diverse cultural contexts. Frontiers in Human Neuroscience, 15, 703999.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, J. M., Padmala, S., & Pessoa, L. (2012). Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage, 59(2), 1912–1923.

    Article  PubMed  Google Scholar 

  • Cooney, R. E., Atlas, L. Y., Joormann, J., Eugène, F., & Gotlib, I. H. (2006). Amygdala activation in the processing of neutral faces in social anxiety disorder: is neutral really neutral? Psychiatry Research, 148(1), 55–59.

    Article  PubMed  Google Scholar 

  • Davis, M., & Whalen, P. J. (2001). The amygdala: vigilance and emotion. Molecular Psychiatry, 6(1), 13–34.

    Article  CAS  PubMed  Google Scholar 

  • de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T. (2016). Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(24), 6553–6562.

    Article  PubMed  Google Scholar 

  • Denny, B. T., Fan, J., Liu, X., Ochsner, K. N., Guerreri, S., Mayson, S. J., et al., (2015). Elevated amygdala activity during reappraisal anticipation predicts anxiety in avoidant personality disorder. Journal of Affective Disorders, 172, 1–7.

    Article  PubMed  Google Scholar 

  • Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American Journal of Psychiatry, 164(10), 1476–1488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828.

    Article  PubMed  Google Scholar 

  • Fox, A. S., & Shackman, A. J. (2019). The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neuroscience Letters, 693, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., et al., (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439-452e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley, C. A., & Phelps, E. A. (2010). Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 136–146.

    Article  PubMed  Google Scholar 

  • Hirsch, C. R., Meeten, F., Krahé, C., & Reeder, C. (2016). Resolving ambiguity in emotional disorders: The nature and role of interpretation biases. Annual Review of Clinical Psychology, 12, 281–305.

    Article  PubMed  Google Scholar 

  • Jolly, E., & Chang, L. J. (2019). The flatland fallacy: Moving beyond low–dimensional thinking. Topics in Cognitive Science, 11(2), 433–454.

    Article  PubMed  Google Scholar 

  • Katabi, N., Simon, H., Yakim, S., Ravreby, I., Ohad, T., & Yeshurun, Y. (2023). Deeper Than you think: Partisanship-dependent brain responses in early sensory and motor brain regions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 43(6), 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. I., Jung, W. H., Woo, C. W., & Kim, H. (2022). Neural signatures of individual variability in context-dependent perception of ambiguous facial expression. NeuroImage, 258, 119355.

    Article  PubMed  Google Scholar 

  • Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Muraven, M., & Whalen, P. J. (2011). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223(2), 403–410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, W., & Kim, M. J. (2022). Morphological similarity of amygdala-ventral prefrontal pathways represents trait anxiety in younger and older adults. Proceedings of the National Academy of Sciences of the United States of America, 119(42), e2205162119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5(7) eaaw4358.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis–connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience2, 4.

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International Affective Picture System (IAPS): Instruction manual and affective ratings, Technical Report A-8. Gainesville: The Center for Research in Psychophysiology, University of Florida.

    Google Scholar 

  • Liao, H., & Xu, Z. (2015). Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Systems with Applications, 42(12), 5328–5336.

    Article  Google Scholar 

  • Maharani, D. A., Machbub, C., Rusmin, P. H., & Yulianti, L. (2020). Improving the capability of real-time face masked recognition using cosine distance. In 2020 6th International Conference on Interactive Digital Media (ICIDM) (pp. 1–6).

  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–220.

    CAS  PubMed  Google Scholar 

  • Marek, S., Tervo-Clemmens, B., Calabro, F. J. et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654–660.

  • Mathews, A., & MacLeod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45, 25–50.

    Article  CAS  PubMed  Google Scholar 

  • Mattek, A. M., Burr, D. A., Shin, J., Whicker, C. L., & Kim, M. J. (2020). Identifying the representational structure of affect using fMRI. Affective Science, 1(1), 42–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogg, K., & Marden, B. (1990). Processing of emotional information in anxious subjects. The British journal of Clinical Psychology / the British Psychological Society, 29(2), 227–229.

    Article  CAS  Google Scholar 

  • Morris, J. S., Friston, K. J., Büchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain: A Journal of Neurology, 121, 47–57.

    Article  PubMed  Google Scholar 

  • Nguyen, M., Vanderwal, T., & Hasson, U. (2019). Shared understanding of narratives is correlated with shared neural responses. NeuroImage, 184, 161–170.

    Article  PubMed  Google Scholar 

  • Nummenmaa, L., Glerean, E., Viinikainen, M., Jääskeläinen, I. P., Hari, R., & Sams, M. (2012). Emotions promote social interaction by synchronizing brain activity across individuals. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9599–9604.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17(4), 292–299.

    Article  PubMed  Google Scholar 

  • Rhoads, S. A., Cardinale, E. M., O’Connell, K., Palmer, A. L., VanMeter, J. W., & Marsh, A. A. (2020). Mapping neural activity patterns to contextualized fearful facial expressions onto callous-unemotional (CU) traits: intersubject representational similarity analysis reveals less variation among high-CU adolescents. Personality Neuroscience, 3, e12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riemann, B. C., & McNally, R. J. (1995). Cognitive processing of personally relevant information. Cognition and Emotion, 9(4), 325–340.

    Article  Google Scholar 

  • Somerville, L. H., Kim, H., Johnstone, T., Alexander, A. L., & Whalen, P. J. (2004). Human amygdala responses during presentation of happy and neutral faces: correlations with state anxiety. Biological Psychiatry, 55(9), 897–903.

    Article  PubMed  Google Scholar 

  • Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.

    Google Scholar 

  • Spisak, T., Bingel, U., & Wager, T. D. (2023). Multivariate BWAS can be replicable with moderate sample sizes. Nature615, E4–E7.

  • van Baar, J. M., Chang, L. J., & Sanfey, A. G. (2019). The computational and neural substrates of moral strategies in social decision-making. Nature Communications, 10(1), 1483.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 45(1), 174–194.

    Article  PubMed  Google Scholar 

  • Wagner, D. D., & Heatherton, T. F. (2012). Self-regulatory depletion increases emotional reactivity in the amygdala. Social Cognitive and Affective Neuroscience, 8, 410–417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Q., Hu, J., Qin, Y., Li, G., Zhang, X., & Li, P. (2023). Intention affects fairness processing: Evidence from behavior and representational similarity analysis of event-related potential signals. Human Brain Mapping, 44(6), 2451–2464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon, K. L., & Zinbarg, R. E. (2008). Interpreting neutral faces as threatening is a default mode for socially anxious individuals. Journal of Abnormal Psychology, 117(3), 680–685.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the NSTC and MOE (MOST 109-2636-H-002-006 and 110-2636-H-002-004; NSTC 111-2628-H-002-004 and 111-2423-H-002-008-MY4; MOE NTU-CC-110L9A00702 and 112L9A00402 to P.-H.A. Chen) in Taiwan. This research was also supported by the National Research Foundation of Korea (NRF-2021R1F1A1045988 to M.J. Kim).

Declarations

Funding

This research was supported by funding from the NSTC and MOE (MOST 109-2636-H-002-006 and 110-2636-H-002-004; NSTC 111-2628-H-002-004 and 111-2423-H-002-008-MY4; MOE NTU-CC-110L9A00702 and 112L9A00402 to P.-H.A. Chen) in Taiwan. This research was also supported by the National Research Foundation of Korea (NRF-2021R1F1A1045988 to M.J. Kim).

Author information

Authors and Affiliations

Authors

Contributions

Study design (Chen, P.-H. A.), data collection (Chen, P.-H. A.), statistical analysis (Hsiao, P.-Y. A. and Chou, F.-C. B.), interpretation of results (Hsiao, P.-Y. A, Kim, M.J. and Chen, P.-H. A.), writing the manuscript (All authors), and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (All authors).

Corresponding author

Correspondence to Pin-Hao A. Chen.

Ethics declarations

Ethics approval

This research conformed to all guidelines of the institutional review board at Dartmouth College.

Consent to participate

Informed consent was obtained from each participant.

Consent for publication

All co-authors have seen and agreed with the contents of the manuscript. We certify that this submission is an original work and is not under review at any other publication.

Competing interests

The authors declare no competing interests.

Conflicts of interest

All co-authors have no competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, PY.A., Kim, M.J., Chou, FC.B. et al. Intersubject representational similarity analysis uncovers the impact of state anxiety on brain activation patterns in the human extrastriate cortex. Brain Imaging and Behavior 18, 1–9 (2024). https://doi.org/10.1007/s11682-024-00854-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-024-00854-1

Keywords

Navigation