Skip to main content

Advertisement

Log in

Hippocampal subfield volumes in mild cognitive impairment and alzheimer’s disease: a systematic review and meta-analysis

  • Review Article
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The hippocampus is a complex structure that consists of several subfields with distinct and specialized functions. Although numerous studies have been performed to explore hippocampal atrophy at the sub-regional level in mild cognitive impairment (MCI) and Alzheimer’s disease (AD), the results have been inconsistent especially for whether and which subfields can be served as the most potential biomarkers in MCI and AD. Herein, we used a meta-analytic approach to synthesize the extant literatures on hippocampal subfields in MCI and AD through PubMed, Web of Science, and Embase (PROSPERO CRD42021257586). As a result, a total of twenty studies using Freesurfer 5 and Freesurfer 6 were included in this investigation. These studies revealed that at the sub-regional level, hippocampal subfield volume reductions in MCI and AD were not restricted to specific subfields, and subiculum and presubiculum had the largest z-scores across most comparisons. However, none of the subfield performed much better in discriminating MCI and HC, AD and MCI, AD and HC as compared to whole hippocampus volume. These results suggested that we should explore the changes in the hippocampal subfields in subtypes of MCI or even at an earlier stage, that is subjective cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data were available from published literature.

References

  • Adamowicz, D. H., Roy, S., Salmon, D. P., Galasko, D. R., Hansen, L. A., Masliah, E., & Gage, F. H. (2017). Hippocampal alpha-synuclein in dementia with Lewy Bodies contributes to memory impairment and is consistent with spread of Pathology. J NEUROSCI, 37, 1675–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. ALZHEIMERS DEMENT, 7, 270–279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzheimer’s Disease International (2018). World Alzheimer Report 2018. The state of the art of Dementia Research: New Frontiers. Alzheimer’s Disease International.

  • Boccardi, V., Westman, E., Pelini, L., Lindberg, O., Muehlboeck, J., Simmons, A., Tarducci, R., Floridi, P., Chiarini, P., Soininen, H., Kloszewska, I., Tsolaki, M., Vellas, B., Spenger, C., Wahlund, L., Lovestone, S., & Mecocci, P. (2019). Differential Associations of IL-4 with hippocampal subfields in mild cognitive impairment and Alzheimer’s Disease (p. 10). FRONT AGING NEUROSCI.

  • Boen, E., Westlye, L. T., Elvsashagen, T., Hummelen, B., Hol, P. K., Boye, B., Andersson, S., Karterud, S., & Malt, U. F. (2014). Smaller stress-sensitive hippocampal subfields in women with borderline personality disorder without posttraumatic stress disorder. Journal of Psychiatry and Neuroscience, 39, 127–134.

    PubMed  PubMed Central  Google Scholar 

  • Bromis, K., Calem, M., Reinders, A., Williams, S., & Kempton, M. J. (2018). Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with Major Depressive Disorder. American Journal of Psychiatry, 175, 989–998.

    Article  PubMed  Google Scholar 

  • Carlesimo, G. A., Piras, F., Orfei, M. D., Iorio, M., Caltagirone, C., & Spalletta, G. (2015). Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis Assessment & Disease Monitoring, 1, 24–32.

    Google Scholar 

  • Chen, S., Xu, W., Xue, C., Hu, G., Ma, W., Qi, W., Dong, L., Lin, X., & Chen, J. (2020). Voxelwise Meta-Analysis of Gray Matter Abnormalities in mild cognitive impairment and subjective cognitive decline using activation likelihood estimation. J ALZHEIMERS DIS, 77, 1495–1512.

    Article  PubMed  Google Scholar 

  • Comper, S. M., Jardim, A. P., Corso, J. T., Gaca, L. B., Noffs, M., Lancellotti, C., Cavalheiro, E. A., Centeno, R. S., & Yacubian, E. (2017). Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis. EPILEPSY BEHAV, 75, 183–189.

    Article  PubMed  Google Scholar 

  • de Flores, R., La Joie, R., Landeau, B., Perrotin, A., Mezenge, F., de La Sayette, V., Eustache, F., Desgranges, B., & Chetelat, G. (2015). Effects of age and Alzheimer’s disease on hippocampal subfields: Comparison between manual and FreeSurfer volumetry. HUM BRAIN MAPP, 36, 463–474.

    Article  PubMed  Google Scholar 

  • Delli, P. S., Franciotti, R., Bubbico, G., Thomas, A., Onofrj, M., & Bonanni, L. (2016). Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. NEUROBIOL AGING, 40, 103–109.

    Article  Google Scholar 

  • Delli Pizzi, S., Franciotti, R., Bubbico, G., Thomas, A., Onofrj, M., & Bonanni, L. (2016). Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. NEUROBIOL AGING, 40, 103–109.

    Article  PubMed  Google Scholar 

  • Duvernoy, H. M. (2008). The human Hippocampus, functional anatomy, vascularization and serial sections with MRI. Springer-Verlag.

  • George, S., Ronnback, A., Gouras, G. K., Petit, G. H., Grueninger, F., Winblad, B., Graff, C., & Brundin, P. (2014). Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun, 2, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, L., & Zhang, Z. (2019). Exploring structural and functional brain changes in mild cognitive impairment: A whole brain ALE Meta-analysis for Multimodal MRI. ACS CHEM NEUROSCI, 10, 2823–2829.

    Article  CAS  PubMed  Google Scholar 

  • Hanseeuw, B. J., Van Leemput, K., Kavec, M., Grandin, C., Seron, X., & Ivanoiu, A. (2011). Mild cognitive impairment: Differential atrophy in the hippocampal subfields. American Journal of Neuroradiology, 32, 1658–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, N., Singh, A., Bartels, C., Brosseron, F., Buerger, K., Cetindag, A. C., Dobisch, L., Dechent, P., Ertl-Wagner, B. B., Fliessbach, K., Haynes, J. D., Heneka, M. T., Janowitz, D., Kilimann, I., Laske, C., Metzger, C. D., Munk, M. H., Peters, O., Priller, J., Roy, N., Scheffler, K., Schneider, A., Spottke, A., Spruth, E. J., Teipel, S., Tscheuschler, M., Vukovich, R., Wiltfang, J., Duezel, E., Jessen, F., & Goya-Maldonado, R. (2021). Hippocampal and hippocampal-subfield volumes from early-onset Major Depression and Bipolar Disorder to Cognitive Decline. FRONT AGING NEUROSCI 13.

  • Hata, K., Nakamoto, K., Nunomura, A., Sone, D., Maikusa, N., Ogawa, M., Sato, N., & Matsuda, H. (2019). Automated volumetry of medial temporal lobe subregions in mild cognitive impairment and Alzheimer Disease. Alzheimer Disease and Associated Disorders, 33, 206–211.

    Article  PubMed  Google Scholar 

  • Hayes, J. P., Hayes, S., Miller, D. R., Lafleche, G., Logue, M. W., & Verfaellie, M. (2017). Automated measurement of hippocampal subfields in PTSD: Evidence for smaller dentate gyrus volume. J PSYCHIATR RES, 95, 247–252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman, J. P., & Mueller, N. K. (2006). Role of the ventral subiculum in stress integration. BEHAV BRAIN RES, 174, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. STAT MED, 21, 1539–1558.

    Article  PubMed  Google Scholar 

  • Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. Bmj, 327, 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirjak, D., Wolf, R. C., Remmele, B., Seidl, U., Thomann, A. K., Kubera, K. M., Schröder, J., Maier-Hein, K. H., & Thomann, P. A. (2017). Hippocampal formation alterations differently contribute to autobiographic memory deficits in mild cognitive impairment and Alzheimer’s disease. HIPPOCAMPUS, 27, 702–715.

    Article  PubMed  Google Scholar 

  • Huang, L., Chen, K., Hu, X., & Guo, Q. (2020). Differential Atrophy in the hippocampal subfield volumes in four types of mild dementia (p. 14). FRONT NEUROSCI-SWITZ.

  • Hurtz, S., Chow, N., Watson, A. E., Somme, J. H., Goukasian, N., Hwang, K. S., Morra, J., Elashoff, D., Gao, S., Petersen, R. C., Aisen, P. S., Thompson, P. M., & Apostolova, L. G. (2019). Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability. Neuroimage Clin, 21, 101574.

    Article  PubMed  Google Scholar 

  • Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., Roy, N., Frosch, M. P., McKee, A. C., Wald, L. L., Fischl, B., & Van Leemput, K. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NEUROIMAGE 115, 117–137.

  • Izzo, J., Andreassen, O. A., Westlye, L. T., & van der Meer, D. (2020). The association between hippocampal subfield volumes in mild cognitive impairment and conversion to Alzheimer’s disease. BRAIN RES, 1728, 146591.

    Article  CAS  PubMed  Google Scholar 

  • Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer’s disease: The role of the hippocampus. Reviews in the Neurosciences, 28, 705–714.

    Article  PubMed  Google Scholar 

  • Kang, J. M., Cho, Y. S., Park, S., Lee, B. H., Sohn, B. K., Choi, C. H., Choi, J. S., Jeong, H. Y., Cho, S. J., Lee, J. H., & Lee, J. Y. (2018). Montreal cognitive assessment reflects cognitive reserve. BMC GERIATR, 18, 261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerchner, G. A., Hess, C. P., Hammond-Rosenbluth, K. E., Xu, D., Rabinovici, G. D., Kelley, D. A., Vigneron, D. B., Nelson, S. J., & Miller, B. L. (2010). Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. NEUROLOGY, 75, 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesner, R. P., & Hopkins, R. O. (2006). Mnemonic functions of the hippocampus: A comparison between animals and humans. BIOL PSYCHOL, 73, 3–18.

    Article  PubMed  Google Scholar 

  • Khan, W., Westman, E., Jones, N., Wahlund, L., Mecocci, P., Vellas, B., Tsolaki, M., Kłoszewska, I., Soininen, H., Spenger, C., Lovestone, S., Muehlboeck, J., & Simmons, A. (2015). Automated hippocampal subfield measures as predictors of Conversion from mild cognitive impairment to Alzheimer’s Disease in two independent cohorts. BRAIN TOPOGR, 28, 746–759.

    Article  PubMed  Google Scholar 

  • Landau, S. M., Harvey, D., Madison, C. M., Reiman, E. M., Foster, N. L., Aisen, P. S., Petersen, R. C., Shaw, L. M., Trojanowski, J. Q., Jack, C. J., Weiner, M. W., & Jagust, W. J. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. NEUROLOGY, 75, 230–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, S. S., Khan, U., Lewandowski, N., Chakraborty, D., Provenzano, F. A., Mingote, S., Chornyy, S., Frigerio, F., Maechler, P., Kaphzan, H., Small, S. A., Rayport, S., & Gaisler-Salomon, I. (2019). Glutamate dehydrogenase-deficient mice display Schizophrenia-Like behavioral abnormalities and CA1-Specific hippocampal dysfunction. Schizophrenia Bulletin, 45, 127–137.

    Article  PubMed  Google Scholar 

  • Langella, S., Sadiq, M. U., Mucha, P. J., Giovanello, K. S., & Dayan, E. (2021). Lower functional hippocampal redundancy in mild cognitive impairment. Transl Psychiatry, 11, 61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Li, D., Li, Q., Li, Y., Li, K., Li, S., & Han, Y. (2016). Hippocampal subfield volumetry in patients with subcortical vascular mild cognitive impairment. SCI REP-UK 6.

  • Liang, X., Yin, Z., Liu, R., Zhao, H., Wu, S., Lu, J., Qing, Z., Wei, Y., Yang, Q., Zhu, B., Xu, Y., & Zhang, B. (2019). The role of MRI biomarkers and their interactions with cognitive status and APOE ε4 in Nondemented Elderly subjects. NEURODEGENER DIS, 18, 270–280.

    Article  Google Scholar 

  • Lim, H. K., Hong, S. C., Jung, W. S., Ahn, K. J., Won, W. Y., Hahn, C., Kim, I. S., & Lee, C. U. (2012). Automated hippocampal subfield segmentation in amnestic mild cognitive impairments. DEMENT GERIATR COGN, 33, 327–333.

    Article  Google Scholar 

  • Lim, H. K., Hong, S. C., Jung, W. S., Ahn, K. J., Won, W. Y., Hahn, C., Kim, I. S., & Lee, C. U. (2013). Automated segmentation of hippocampal Subfields in Drug-Naïve patients with Alzheimer Disease. AM J NEURORADIOL, 34, 747–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Paajanen, T., Zhang, Y., Westman, E., Wahlund, L. O., Simmons, A., Tunnard, C., Sobow, T., Mecocci, P., Tsolaki, M., Vellas, B., Muehlboeck, S., Evans, A., Spenger, C., Lovestone, S., & Soininen, H. (2011). Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups–the AddNeuroMed study. NEUROBIOL AGING, 32, 1198–1206.

    Article  PubMed  Google Scholar 

  • Matsumoto, N., Kitanishi, T., & Mizuseki, K. (2019). The subiculum: Unique hippocampal hub and more. NEUROSCI RES, 143, 1–12.

    Article  PubMed  Google Scholar 

  • McNaughton, N. (2006). The role of the subiculum within the behavioural inhibition system. BEHAV BRAIN RES, 174, 232–250.

    Article  CAS  PubMed  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Bmj, 339, b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller, S. G., Chao, L. L., Berman, B., & Weiner, M. W. (2011). Evidence for functional specialization of hippocampal subfields detected by MR subfield volumetry on high resolution images at 4 T. NEUROIMAGE, 56, 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Mahady, L., Waters, D., Counts, S. E., Perez, S. E., DeKosky, S. T., Ginsberg, S. D., Ikonomovic, M. D., Scheff, S. W., & Binder, L. I. (2015). Hippocampal plasticity during the progression of Alzheimer’s disease. NEUROSCIENCE, 309, 51–67.

    Article  CAS  PubMed  Google Scholar 

  • Murray, C. E., Gami-Patel, P., Gkanatsiou, E., Brinkmalm, G., Portelius, E., Wirths, O., Heywood, W., Blennow, K., Ghiso, J., Holton, J. L., Mills, K., Zetterberg, H., Revesz, T., & Lashley, T. (2018). The presubiculum is preserved from neurodegenerative changes in Alzheimer’s disease. Acta Neuropathol Commun, 6, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nauer, R. K., Whiteman, A. S., Dunne, M. F., Stern, C. E., & Schon, K. (2015). Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding. Frontiers in Systems Neuroscience, 9, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Novellino, F., Vasta, R., Sarica, A., Chiriaco, C., Salsone, M., Morelli, M., Arabia, G., Sacca, V., Nicoletti, G., & Quattrone, A. (2018). Relationship between hippocampal Subfields and Category Cued Recall in AD and PDD: A Multimodal MRI Study. NEUROSCIENCE, 371, 506–517.

    Article  CAS  PubMed  Google Scholar 

  • O’Mara, S. M., Sanchez-Vives, M. V., Brotons-Mas, J. R., & O’Hare, E. (2009). Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Progress in Neuropsychopharmacology and Biological Psychiatry, 33, 782–790.

    Article  Google Scholar 

  • Orfei, M. D., Piras, F., Banaj, N., Di Lorenzo, G., Siracusano, A., Caltagirone, C., Bandinelli, P. L., Ducci, G., & Spalletta, G. (2017). Unrealistic self-overconfidence in schizophrenia is associated with left presubiculum atrophy and impaired episodic memory. CORTEX, 86, 132–139.

    Article  PubMed  Google Scholar 

  • Parker, T. D., Slattery, C. F., Yong, K. X. X., Nicholas, J. M., Paterson, R. W., Foulkes, A. J. M., Malone, I. B., Thomas, D. L., Cash, D. M., Crutch, S. J., Fox, N. C., & Schott, J. M. (2019). Differences in hippocampal subfield volume are seen in phenotypic variants of early onset Alzheimer’s disease. NeuroImage: Clinical 21, 101632.

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  • Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., & Frisoni, G. B. (2016). Brain atrophy in Alzheimer’s Disease and aging. AGEING RES REV, 30, 25–48.

    Article  PubMed  Google Scholar 

  • Potvin, O., Dore, F. Y., & Goulet, S. (2007). Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory. NEUROBIOL LEARN MEM, 87, 669–678.

    Article  PubMed  Google Scholar 

  • Rashid, H., & Ahmed, T. (2019). Muscarinic activity in hippocampus and entorhinal cortex is crucial for spatial and fear memory retrieval. PHARMACOL REP, 71, 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. PROG NEUROBIOL, 79, 1–48.

    Article  CAS  PubMed  Google Scholar 

  • Rusek, M., Pluta, R., Ulamek-Koziol, M., & Czuczwar, S. J. (2019). Ketogenic Diet in Alzheimer’s Disease. INT J MOL SCI 20.

  • Sarica, A., Vasta, R., Novellino, F., Vaccaro, M. G., Cerasa, A., & Quattrone, A. (2018). MRI Asymmetry Index of Hippocampal Subfields Increases Through the Continuum From the Mild Cognitive Impairment to the Alzheimer’s Disease. FRONT NEUROSCI-SWITZ 12.

  • Shang, Q., Zhang, Q., Liu, X., & Zhu, L. (2022). Prediction of Early Alzheimer Disease by Hippocampal Volume Changes under Machine Learning Algorithm. Comput Math Methods Med 2022, 3144035.

  • Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. NAT REV NEUROSCI, 12, 585–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. J., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. ALZHEIMERS DEMENT, 7, 280–292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. PSYCHOL REV, 99, 195–231.

    Article  CAS  PubMed  Google Scholar 

  • Su, L., Hayes, L., Soteriades, S., Williams, G., Brain, S., Firbank, M. J., Longoni, G., Arnold, R. J., Rowe, J. B., & O’Brien, J. T. (2018). Hippocampal stratum Radiatum, Lacunosum, and Moleculare Sparing in mild cognitive impairment. J ALZHEIMERS DIS, 61, 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamnes, C. K., Bos, M., van de Kamp, F. C., Peters, S., & Crone, E. A. (2018). Longitudinal development of hippocampal subregions from childhood to adulthood. Developmental Cognitive Neuroscience, 30, 212–222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, X., Holland, D., Dale, A. M., Younes, L., & Miller, M. I. (2014). Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer’s disease: Detecting, quantifying, and predicting. HUM BRAIN MAPP, 35, 3701–3725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of a beta-deposition in the human brain and its relevance for the development of AD. NEUROLOGY, 58, 1791–1800.

    Article  PubMed  Google Scholar 

  • Travis, S. G., Huang, Y., Fujiwara, E., Radomski, A., Olsen, F., Carter, R., Seres, P., & Malykhin, N. V. (2014). High field structural MRI reveals specific episodic memory correlates in the subfields of the hippocampus. NEUROPSYCHOLOGIA, 53, 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Tsanov, M., & O’Mara, S. M. (2015). Decoding signal processing in thalamo-hippocampal circuitry: Implications for theories of memory and spatial processing. BRAIN RES, 1621, 368–379.

    Article  CAS  PubMed  Google Scholar 

  • van der Meer, D., Rokicki, J., Kaufmann, T., Cordova-Palomera, A., Moberget, T., Alnaes, D., Bettella, F., Frei, O., Doan, N. T., Sonderby, I. E., Smeland, O. B., Agartz, I., Bertolino, A., Bralten, J., Brandt, C. L., Buitelaar, J. K., Djurovic, S., van Donkelaar, M., Dorum, E. S., Espeseth, T., Faraone, S. V., Fernandez, G., Fisher, S. E., Franke, B., Haatveit, B., Hartman, C. A., Hoekstra, P. J., Haberg, A. K., Jonsson, E. G., Kolskar, K. K., Le Hellard, S., Lund, M. J., Lundervold, A. J., Lundervold, A., Melle, I., Monereo, S. J., Norbom, L. C., Nordvik, J. E., Nyberg, L., Oosterlaan, J., Papalino, M., Papassotiropoulos, A., Pergola, G., de Quervain, D., Richard, G., Sanders, A. M., Selvaggi, P., Shumskaya, E., Steen, V. M., Tonnesen, S., Ulrichsen, K. M., Zwiers, M. P., Andreassen, O. A., & Westlye, L. T. (2020). Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Molecular Psychiatry 25, 3053–3065.

    Article  PubMed  Google Scholar 

  • Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L. L., Augustinack, J., Dickerson, B. C., Golland, P., & Fischl, B. (2009). Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. HIPPOCAMPUS, 19, 549–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasta, R., Augimeri, A., Cerasa, A., Nigro, S., Gramigna, V., Nonnis, M., Rocca, F., Zito, G., Quattrone, A., & For, T. A. D. N. (2016). Hippocampal subfield atrophies in converted and not-converted mild cognitive impairments patients by a Markov Random Fields Algorithm. CURR ALZHEIMER RES, 13, 566–574.

    Article  CAS  PubMed  Google Scholar 

  • Wisse, L., Chetelat, G., Daugherty, A. M., de Flores, R., la Joie, R., Mueller, S. G., Stark, C., Wang, L., Yushkevich, P. A., Berron, D., Raz, N., Bakker, A., Olsen, R. K., & Carr, V. A. (2021). Hippocampal subfield volumetry from structural isotropic 1 mm(3) MRI scans: A note of caution. HUM BRAIN MAPP, 42, 539–550.

    Article  PubMed  Google Scholar 

  • Witte, A. V., Köbe, T., Graunke, A., Schuchardt, J. P., Hahn, A., Tesky, V. A., Pantel, J., & Flöel, A. (2016). Impact of leptin on memory function and hippocampal structure in mild cognitive impairment. HUM BRAIN MAPP, 37, 4539–4549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S., Gertje, E. C., Mancuso, L., Kliot, D., Das, S. R., & Wolk, D. A. (2015). Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. HUM BRAIN MAPP, 36, 258–287.

    Article  PubMed  Google Scholar 

  • Yushkevich, P. A., Munoz, L. M., Iniguez, D. O. M. M., Ittyerah, R., Lim, S., Ravikumar, S., Bedard, M. L., Pickup, S., Liu, W., Wang, J., Hung, L. Y., Lasserve, J., Vergnet, N., Xie, L., Dong, M., Cui, S., McCollum, L., Robinson, J. L., Schuck, T., de Flores, R., Grossman, M., Tisdall, M. D., Prabhakaran, K., Mizsei, G., Das, S. R., Artacho-Perula, E., Arroyo, J. M., Marcos, R. M., Molina, R. F., Cebada, S. S., Delgado, G. J., de la Rosa-Prieto, C., Corcoles, P. M., Lee, E. B., Trojanowski, J. Q., Ohm, D. T., Wisse, L., Wolk, D. A., Irwin, D. J., & Insausti, R. (2021). Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. BRAIN 144, 2784–2797.

  • Zeng, Q., Li, K., Luo, X., Wang, S., Xu, X., Li, Z., Zhang, T., Liu, X., Fu, Y., Xu, X., Wang, C., Wang, T., Zhou, J., Liu, Z., Chen, Y., Huang, P., & Zhang, M. (2021). Distinct atrophy pattern of hippocampal Subfields in patients with progressive and stable mild cognitive impairment: A longitudinal MRI study. Journal of Alzheimer’s Disease, 79, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, W., Wang, X., Yin, C., He, M., Li, S., & Han, Y. (2019). Trajectories of the hippocampal Subfields Atrophy in the Alzheimer’s Disease: A structural imaging study. FRONT NEUROINFORM 13.

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82305388, 62006220 and 62001462), National Key R&D Program of China (2019YFC1712200), International standards research on clinical research and service of Acupuncture-Moxibustion (2019YFC1712205), Shenzhen Science and Technology Research Program (No. JCYJ20180507182441903 and JCYJ20200109114816594), and Special Innovation Project of the Guangdong Provincial Department of Education (2021WQNCX068).

Author information

Authors and Affiliations

Authors

Contributions

Y.H.B, and X.J.P designed the whole study. Z.J.H, Z.X.D, and W.H.Y analyzed the data, Z.J.H wrote the manuscript. L.Y.F, H.J.T and X.L.L searched and selected the studies. C.C.J participated in the discussion. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haibo Yu or Jinping Xu.

Ethics declarations

Ethical approval and consent to participate

Not applicable. This meta-analysis uses data from already published papers. The data collection procedures for the participants’ data employed here were approved by the local Institutional Review Boards of the respective data acquisition sites.

Consent to participate

Informed consent was obtained from all participants included in the study.

Consent for publication

Not applicable.

Competing Interests

None of the authors have a conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xie, L., Cheng, C. et al. Hippocampal subfield volumes in mild cognitive impairment and alzheimer’s disease: a systematic review and meta-analysis. Brain Imaging and Behavior 17, 778–793 (2023). https://doi.org/10.1007/s11682-023-00804-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-023-00804-3

Keywords

Navigation