Abstract
Objectives
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system. Accumulating evidence suggests there is a distinct pattern of brain lesions characteristic of NMOSD, and brain MRI has potential prognostic implications. However, the question of how the brain lesions in NMOSD are associated with its distinct clinical course remains incompletely understood. Here, we aimed to investigate the association between neurological impairment and brain lesions via brain structural disconnection.
Methods
Twenty patients were diagnosed with NMOSD according to the 2015 International Panel for NMO Diagnosis criteria. The white matter lesions were manually drawn section by section. Whole-brain structural disconnection was estimated, and connectome-based predictive modeling (CPM) was used to estimate the patient’s Expanded Disability Status Scale score (EDSS) from their disconnection severity matrix. Furthermore, correlational tractography was performed to assess the fractional anisotropy (FA) and axial diffusivity (AD) of white matter fibers, which negatively correlated with the EDSS score.
Results
CPM successfully predicted the EDSS using the disconnection severity matrix (r = 0.506, p = 0.028; q2 = 0.274). Among the important edges in the prediction process, the majority of edges connected the motor to the frontoparietal network. Correlational tractography identified a decreased FA and AD value according to EDSS scores in periependymal white matter tracts.
Discussion
Structural disconnection-based predictive modeling and local connectome analysis showed that frontoparietal and periependymal white matter disconnection is predictive and associated with the EDSS score of NMOSD patients.
Keypoints:
The structural disconnection-based predictive modeling showed that frontoparietal white matter disconnection is predictive of disability in NMOSD patients.
Correlational tractography identified decreased fractional anisotropy value according to EDSS in the periependymal local connectome.
This is a preview of subscription content,
to check access.



Similar content being viewed by others
Data Availability
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Akaishi, T., Takahashi, T., Misu, T., Abe, M., Ishii, T., Fujimori, J., & Nakashima, I. (2020). Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Scientific Reports, 10(1), 1–7.
Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.
Banwell, B. L. (2013). Pediatric multiple sclerosis. Handbook of Clinical Neurology, 112, 1263–1274.
Barron, D. S., Gao, S., Dadashkarimi, J., Greene, A. S., Spann, M. N., Noble, S., & Scheinost, D. (2020). Transdiagnostic, Connectome-Based Prediction of Memory Constructs Across Psychiatric Disorders. Cerebral Cortex.
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364.
Cacciaguerra, L., Rocca, M. A., Storelli, L., Radaelli, M., & Filippi, M. (2021). Mapping white matter damage distribution in neuromyelitis optica spectrum disorders with a multimodal MRI approach. Multiple Sclerosis Journal, 27(6), 841–854.
Catani, M., & Ffytche, D. H. (2005). The rises and falls of disconnection syndromes. Brain, 128(10), 2224–2239.
Chan, K. H., Tse, C., Chung, C., Lee, R. L., Kwan, J., Ho, P., & Ho, J. (2011). Brain involvement in neuromyelitis optica spectrum disorders. Archives of Neurology, 68(11), 1432–1439.
Cheng, C., Jiang, Y., Chen, X., Dai, Y., Kang, Z., Lu, Z., & Hu, X. (2013). Clinical, radiographic characteristics and immunomodulating changes in neuromyelitis optica with extensive brain lesions. BMC Neurology, 13(1), 1–11.
Cho, E. B., Han, C. E., Seo, S. W., Chin, J., Shin, J. H., Cho, H. J., & Na, D. L. (2018). White matter network disruption and cognitive dysfunction in neuromyelitis optica spectrum disorder. Frontiers in Neurology, 9, 1104.
Dutra, B. G., da Rocha, A. J., Nunes, R. H., & Maia, A. C. M. (2018). Neuromyelitis optica spectrum disorders: Spectrum of MR imaging findings and their differential diagnosis. Radiographics : A Review Publication of the Radiological Society of North America, Inc, 38(1), 169–193.
Foulon, C., Cerliani, L., Kinkingnehun, S., Levy, R., Rosso, C., Urbanski, M.,. Thiebaut, & de Schotten, M. (2018). Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience, 7(3), giy004.
Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2020). Damage to the shortest structural paths between brain regions is associated with disruptions of resting-state functional connectivity after stroke. Neuroimage, 210, 116589.
Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2021). Lesion quantification toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. NeuroImage: Clinical, 30, 102639.
Jasiak-Zatonska, M., Kalinowska-Lyszczarz, A., Michalak, S., & Kozubski, W. (2016). The immunology of neuromyelitis optica—current knowledge, clinical implications, controversies and future perspectives. International Journal of Molecular Sciences, 17(3), 273.
Ju, Y., Horien, C., Chen, W., Guo, W., Lu, X., Sun, J., & Yan, D. (2020). Connectome-based models can predict early symptom improvement in major depressive disorder. Journal of Affective Disorders, 273, 442–452.
Kim, W., Kim, S. H., Lee, H., Li, S. F., X., & Kim, J., H (2011). Brain abnormalities as an initial manifestation of neuromyelitis optica spectrum disorder. Multiple Sclerosis Journal, 17(9), 1107–1112.
Kim, H. J., Paul, F., Lana-Peixoto, M. A., Tenembaum, S., Asgari, N., Palace, J., & Wuerfel, J. (2015). MRI characteristics of neuromyelitis optica spectrum disorder: An international update. Neurology, 84(11), 1165–1173.
Kim, M., Choi, K. S., Hyun, R. C., Hwang, I., Yun, T. J., Kim, S. M., & Kim, J. (2022). Free-water diffusion tensor imaging detects occult periependymal abnormality in the AQP4-IgG-seropositive neuromyelitis optica spectrum disorder. Scientific Reports, 12(1), 1–10.
Lennon, V. A., Wingerchuk, D. M., Kryzer, T. J., Pittock, S. J., Lucchinetti, C. F., Fujihara, K., & Weinshenker, B. G. (2004). A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. The Lancet, 364(9451), 2106–2112.
Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A., & Hinson, S. R. (2005). IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. The Journal of Experimental Medicine, 202(4), 473–477.
Liu, Y., Duan, Y., He, Y., Yu, C., Wang, J., Huang, J., & Shu, N. (2012). A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Multiple Sclerosis Journal, 18(7), 1013–1021.
Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 47(6), 707–717.
Lucchinetti, C. F., Guo, Y., Popescu, B. F. G., Fujihara, K., Itoyama, Y., & Misu, T. (2014). The pathology of an autoimmune astrocytopathy: Lessons learned from neuromyelitis optica. Brain Pathology, 24(1), 83–97.
Misu, T., Fujihara, K., Kakita, A., Konno, H., Nakamura, M., Watanabe, S., & Itoyama, Y. (2007). Loss of aquaporin 4 in lesions of neuromyelitis optica: Distinction from multiple sclerosis. Brain, 130(5), 1224–1234.
Noble, S., Spann, M. N., Tokoglu, F., Shen, X., Constable, R. T., & Scheinost, D. (2017). Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebral Cortex, 27(11), 5415–5429.
Pittock, S. J., Lennon, V. A., Krecke, K., Wingerchuk, D. M., Lucchinetti, C. F., & Weinshenker, B. G. (2006a). Brain abnormalities in neuromyelitis optica. Archives of Neurology, 63(3), 390–396.
Pittock, S. J., Weinshenker, B. G., Lucchinetti, C. F., Wingerchuk, D. M., Corboy, J. R., & Lennon, V. A. (2006b). Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Archives of Neurology, 63(7), 964–968.
Ravano, V., Andelova, M., Fartaria, M. J., Mahdi, M. F. A. W., Maréchal, B., Meuli, R., & Horakova, D. (2021). Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study. NeuroImage: Clinical, 32, 102817.
Ren, Z., Daker, R. J., Shi, L., Sun, J., Beaty, R. E., Wu, X., & Green, A. E. (2021). Connectome-Based predictive modeling of Creativity anxiety. Neuroimage, 225, 117469.
Roemer, S. F., Parisi, J. E., Lennon, V. A., Benarroch, E. E., Lassmann, H., Bruck, W., & Wingerchuk, D. M. (2007). Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain, 130(5), 1194–1205.
Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., & Barron, D. S. (2019). Ten simple rules for predictive modeling of individual differences in neuroimaging. Neuroimage, 193, 35–45.
Schoonheim, M., Broeders, T., & Geurts, J. (2022). The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics. NeuroImage: Clinical, 103108.
Schüürmann, G., Ebert, R. U., Chen, J., Wang, B., & Kühne, R. (2008). External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. Journal of Chemical Information and Modeling, 48(11), 2140–2145.
Schwid, S., Goodman, A., Mattson, D., Mihai, C., Donohoe, K., Petrie, M., & McDermott, M. (1997). The measurement of ambulatory impairment in multiple sclerosis. Neurology, 49(5), 1419–1424.
Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506–518.
Ter Telgte, A., van Leijsen, E. M., Wiegertjes, K., Klijn, C. J., Tuladhar, A. M., & de Leeuw, F. E. (2018). Cerebral small vessel disease: From a focal to a global perspective. Nature Reviews Neurology, 14(7), 387–398.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.
Wang, K. Y., Chetta, J., Bains, P., Balzer, A., Lincoln, J., Uribe, T., & Lincoln, C. M. (2018). Spectrum of MRI brain lesion patterns in neuromyelitis optica spectrum disorder: A pictorial review. The British Journal of Radiology, 91(1086), 20170690.
Wingerchuk, D. M., Banwell, B., Bennett, J. L., Cabre, P., Carroll, W., Chitnis, T., & Jacob, A. (2015). International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology, 85(2), 177–189.
Yeh, F. C., & Tseng, W. Y. I. (2011). NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage, 58(1), 91–99.
Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. I. (2010). Generalized ${q} $-sampling imaging. IEEE Transactions on Medical Imaging, 29(9), 1626–1635.
Yeh, F. C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W. Y. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One, 8(11), e80713.
Yeh, F. C., Badre, D., & Verstynen, T. (2016). Connectometry: A statistical approach harnessing the analytical potential of the local connectome. Neuroimage, 125, 162–171.
Yeh, F. C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., & Verstynen, T. (2018). Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage, 178, 57–68.
Yeh, F. C., Panesar, S., Barrios, J., Fernandes, D., Abhinav, K., Meola, A., & Fernandez-Miranda, J. C. (2019). Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP). Neurotherapeutics, 16(1), 52–58.
Zheng, Q., Chen, X., Xie, M., Fu, J., Han, Y., Wang, J., & Li, Y. (2021). Altered structural networks in neuromyelitis optica spectrum disorder related with cognition impairment and clinical features. Multiple Sclerosis and Related Disorders, 48, 102714.
Funding
This work was supported by the SNUH Research Fund (No. 04-2022-0520) (K.S.C.),
Author information
Authors and Affiliations
Contributions
Study Design, MCK, KSC, JK, SMK; Data collection, CHR, IH, YNK, JJS, JK, SMK; Data analysis, interpretation, MCK, KSC, JK, SMK; Figures, MCK, KSC; Manuscript Writing, MCK, KSC, SMKAll authors revised and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Ethical approval
and Consent to participate: This study was approved by the Institutional Review Board of SNUH (IRB number: H-1310-083-528), and informed consent was obtained from each participant who was willing to enroll in this study. All processes related to this study were conducted in accordance with the Declaration of Helsinki.
Consent for publication
Not applicable.
Competing interests
The authors disclose no conflicts of interest related to this work.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kim, M., Choi, K.S., Hyun, R.C. et al. Structural disconnection is associated with disability in the neuromyelitis optica spectrum disorder. Brain Imaging and Behavior (2023). https://doi.org/10.1007/s11682-023-00792-4
Accepted:
Published:
DOI: https://doi.org/10.1007/s11682-023-00792-4