Skip to main content
Log in

BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  • American Psychiatric Association, Ed, T., & Revision (2000). Diagnostic and statistical Manual of Mental Disorders (Fourth.). Washington, DC: American Psychiatric Publishing, Inc.

    Google Scholar 

  • Baj, G., Carlino, D., Gardossi, L., & Tongiorgi, E. (2013). Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking. Frontiers in Neuroscience, 7, 188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulle, F., et al. (2012). Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Molecular Psychiatry, 17(6), 584–596.

    Article  CAS  PubMed  Google Scholar 

  • Brown, N. C., Andreazza, A. C., & Young, L. T. (2014). An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Research, 218, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Buonocore, M. H., & Maddock, R. J. (2015). Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Reviews in the neurosciences, 26(6), 609–632.

    Article  PubMed  Google Scholar 

  • Camuso, S., La Rosa, P., Fiorenza, M. T., & Canterini, S. (2022). Pleiotropic effects of BDNF on the cerebellum and hippocampus: implications for neurodevelopmental disorders. Neurobiology of Disease, 163, 105606.

    Article  CAS  PubMed  Google Scholar 

  • Clay, H. B., Sillivan, S., & Konradi, C. (2011). Mitochondrial dysfunction and Pathology in Bipolar Disorder and Schizophrenia. International Journal of Developmental Neuroscience, 29, 311–324.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z-Y; Patel, P.D; Sant, G; Meng, C-X; Teng, K.K; Hempstead, B.L; Lee, F.S. (2004). Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) Alters the Intracellular Trafficking and Activity-Dependent Secretion of Wild-Type BDNF in Neurosecretory Cells and Cortical Neurons. The Journal of Neuroscience, 24(18):4401–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croarkin, P. E., Thomas, M. A., Port, J. D., Baruth, J. M., Choi, D. S., Abulseoud, O. A., & Frye, M. A. (2015). N-acetylaspartate normalization in bipolar depression after lamotrigine treatment. Bipolar Disorders, 17, 450–457.

    Article  CAS  PubMed  Google Scholar 

  • Decoster, J., van Os, J., Kenis, G., Henquet, C., Peuskens, J., De Hert, M., & van Winkel, R. (2011). Age at Onset of psychotic disorder: Cannabis, BDNF Val66Met and sex-specific models of gene–environment Interaction. American Journal of Medical Genetics, 156, 363–369.

    Google Scholar 

  • De-Paula, V. J., Gattaz, W. F., & Forlenza, O. V. (2016). Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations. Bipolar Disorders, 00, 1–4. https://doi.org/10.1111/bdi.12449

    Article  CAS  Google Scholar 

  • Di Rosa, M. C., Zimbone, S., Saab, M. W., & Tomasello, M. F. (2021). The pleiotropic potential of BDNF beyond neurons: implication for a healthy mind in a healthy body. Life, 11, 1256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., & Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activitydependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich, A., Schubert, F., Pehrs, C., & Gallinat, J. (2015). Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Research, 233(2), 73–80.

    Article  PubMed  Google Scholar 

  • Frey, B. N., Walss-Bass, C., Stanley, J. A., Nery, F. G., Matsuo, K., Nicoletti, M. A., Hatch, J. P., Bowden, C. L., Escamilla, M. A., & Soares, J. C. (2007). Brain-derived neurotrophic factor val66met polymorphism a¡ects prefrontal energy metabolism in bipolar disorder. Neuroreport, 18, 1567–1570.

    Article  CAS  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., & Williams, J. B. (1996). Structured clinical interview for DSM-IV Axis I Disorders SCID-I. Washington, DC: American Psychiatric Press.

    Google Scholar 

  • Fukumoto, N., Fujii, T., Combarros, O., Kamboh, M. I., Tsai, S. J., Matsushita, S., Nacmias, B., Comings, D. E., Arboleda, H., Ingelsson, M., Hyman, B. T., Akatsu, H., Grupe, A., Nishimura, A., Zatz, M., Mattila, K. M., Rinne, J., Goto, Y. I., Asada, T., Nakamura, S., & Kunugi, H. (2010). Sexually dimorphic effect of the Val66Met polymorphism of BDNF on susceptibility to Alzheimer’s disease: new data and meta-analysis. American Journal of Medical Genetics, 153B, 235–242.

    CAS  PubMed  Google Scholar 

  • Gallinat, G., Schubert, F., Brühl, R., Hellweg, R., Klär, A. A., Kehrer, C., Wirth, C., Sander, T., & Lang, U. E. (2010). Met carriers of BDNF Val66Met genotype show increased N-acetylaspartate concentration in the anterior cingulate cortex. Neuroimage, 49, 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., et al. (2006). Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic Resonance In Medicine, 55(6), 1219–1226. https://doi.org/10.1002/mrm.20901

    Article  CAS  PubMed  Google Scholar 

  • Gruber, O., Hasan, A., Scherk, H., Wobrock, T., Schneider-Axmann, T., Ekawardhani, S., Schmitt, A., Backens, M., Reith, W., Meyer, J., & Falkai, P. (2012). Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system. European Archives of Psychiatry and Clinical Neuroscience, 262, 23–31.

    Article  PubMed  Google Scholar 

  • Hamilton, M. (1967). Development of a rating scale for primary depressive illness. The British Journal Of Social And Clinical Psychology, 6, 278–296.

    Article  CAS  PubMed  Google Scholar 

  • Harrisberger, F., Spalek, K., Smieskova, R., Schmidt, A., Coynel, D., Milnik, A., Fastenrath, M., Freytag, V., Gschwindc, L., Walter, A., Vogel, T., Bendfeldt, K., de Quervaina, D. J. F., Papassotiropoulos, A., & Borgwardt, S. (2014). The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: a joint meta-analysis of published and new data. Neuroscience and Biobehavioral Reviews, 42, 267–278.

    Article  CAS  PubMed  Google Scholar 

  • Harrisberger, F., Smieskova, R., Schmidt, A., Lenz, C., Walter, A., Wittfeld, K., Grabe, H. J., Lang, U. E., Fusar-Poli, P., & Borgwardt, S. (2015). BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 55, 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J., Hall, N., Mould, A., Al-Juffali, N., & Tunbridge, E. M. (2021). Cellular calcium in bipolar disorder: systematic review and meta-analysis. Molecular Psychiatry, 26, 4106–4116.

    Article  PubMed  Google Scholar 

  • Hibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., et al. (2017). Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA bipolar disorder Working Group. Molecular Psychiatry, 00, 1–11.

    Google Scholar 

  • Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J., & Barde, Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO Journal, 9, 2459–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosang, G. M., Shiles, C., Tansey, K. E., Mcguffin, P., and Uher, R. (2014). Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 12:7. https://doi.org/10.1186/1741-7015-12-7

  • Karaca, M., Frigerio, F., Migrenne, S., Martin-Levilain, J., Skytt, D. M., Pajecka, K., Martin-del-Rio, R., Gruetter, R., Tamarit-Rodriguez, J., Waagepetersen, H. S., Magnan, C., & Maechler, P. (2015). GDH-Dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Reports, 13, 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, K. G., Shahatit, Z., Dimick, M. K., Fiksenbaum, L., Freeman, N., Zai, C. C., Kennedy, J. L., MacIntosh, B. J., & Goldstein, B. I. (2021). Neurostructural correlates of BDNF rs6265 genotype in youth bipolar disorder. Bipolar Disorders, 00, 1–10.

    Google Scholar 

  • Kowiaoski, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. (2017). BDNF: a key factor with multipotent impact on Brain Signaling and synaptic plasticity. Cellular and Molecular Neurobiology, 1, 15.

    Google Scholar 

  • Kreis, R. (2004). Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. Nmr In Biomedicine, 17(6), 361–381. https://doi.org/10.1002/nbm.891

    Article  CAS  PubMed  Google Scholar 

  • Laing, K. R., Mitchell, D., Wersching, H., Czira, M. E., Berger, K., & Baune, B. T. (2012). Brain-derived neurotrophic factor (BDNF) gene: a gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study? Age, 34, 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  • Laitinen, J., Samarut, J., Hölttä, E. (1994) A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques 17(2), 316–322.

  • Lang, U. E., Hellweg, R., Sander, T., & Gallinat, J. (2009). The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Molecular Psychiatry, 14, 120–122.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Chang, H., & Xiao, X. (2016). BDNF Val66Met polymorphism and bipolar disorder in european populations: a risk association in case-control, family based and GWAS studies. Neuroscience & Biobehavioral Reviews, 68, 218–233.

    Article  CAS  Google Scholar 

  • Maletic, V., & Raison, C. (2014). Integrated Neurobiology of Bipolar Disorder. Frontiers in Psychiatry, 5, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandolini, G. M., Lazzaretti, M., Pigoni, A., Delvecchio, G., Soares, J. C., & Brambilla, P. (2019). The impact of BDNF Val66Met polymorphism on cognition in bipolar disorder: a review. Journal of Affective Disorders, 243, 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Markham, A., Bains, R., Franklin, P., & Spedding, M. (2014). Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? British Journal of Pharmacology, 171, 2206–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, L., Herrmann, L., Colic, L., Li, M., Richter, A., Behnisch, G., Stork, O., Seidenbecher, C., Schott, B. H., & Walter, M. (2021). Met carriers of the BDNF Val66Met polymorphism show reduced Glx/ NAA in the pregenual ACC in two independent cohorts. Scientifc Reports, 11, 6742.

    Article  CAS  Google Scholar 

  • Mlynárik, V., Gruber, S., & Moser, E. (2001). Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. Nmr In Biomedicine, 14(5), 325–331. https://doi.org/10.1002/nbm.713

    Article  PubMed  Google Scholar 

  • Mitchelmore, C., & Gede, L. (2014). Brain derived neurotrophic factor: epigenetic regulation in psychiatric disorders. Brain Research, 1586, 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., & Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. American Journal of Human Genetics, 71, 651–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nortje, G., Stein, D.J., Radua, J., Mataix-Cols, D., Horn, N., (2013). Systematic review and voxel-based metaanalysis of diffusion tensor imaging studies in bipolar disorder. J Affec Disor, 150, 192–200.

  • Pagani, R., Gasparini, A., Ielmini, M., Caselli, M., Poloni, I., Ferrari, N., Marino, M., & Callegari, F., C (2019). Twenty years of Lithium pharmacogenetics: a systematic review. Psychiatry Research, 278, 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Paul, P., Nadella, R. K., Sen, S., Ithal, D., Mahadevan, J., Reddy, Y. C. J., Jain, S., Purushottam, M., & Viswanath, B. (2021). Association study of BDNF Val66Met gene polymorphism with bipolar disorder and lithium treatment response in indian population. Journal of Psychopharmacology, 35(12), 1510–1516.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, C.B., Mors, O., Bertelsen, A., Waltoft, BL; Agerbo, E; McGrath, J.J; Mortensen,P.B;; Eaton, W.W. A Comprehensive Nationwide Study of the Incidence Rate and Lifetime Risk for Treated Mental Disorders. JAMA Psychiatry, 71(5), 573–581.

  • Pereira, L. P., Köhler, C. A., de Sousa, R. T., Solmi, M., de Freitas, B. P., Fornaro, M., Machado-Vieira, R., Miskowiak, K. W., Vieta, E., Veronese, N., Stubbs, B., & Carvalho, A. F. (2017). The relationship between genetic risk variants with brain structure and function in bipolar disorder: a systematic review of genetic neuroimaging studies. Neuroscience & Biobehavioral Reviews, 79, 87–109.

    Article  Google Scholar 

  • Provencher, S.W.S., (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med, 30(6), 672–679.

  • Pruunsild, P., Kazantseva, A., Aid, T., Palm, K., & Timmusk, T. (2007). Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics, 90, 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Rackayova, V., Cudalbu, C., Pouwels, P. J. W., & Braissant, O. (2017). Creatine in the central nervous system: from magnetic resonance spectroscopy to creatine deficiencies. Analytical Biochemistry, 529, 144e157.

    Article  Google Scholar 

  • Smedler, E., Pålsson, E., Hashimoto, K., & Landén, M. (2021). Association of CACNA1C polymorphisms with serum BDNF levels in bipolar disorder. The British Journal of Psychiatry, 218, 77–79. https://doi.org/10.1192/bjp.2019.173

    Article  PubMed  Google Scholar 

  • Scotti-Muzzi, E., Umla-Runge, K., & Soeiro-de-Souza, M. G. (2021). Anterior cingulate cortex neurometabolites in bipolar disorder are influenced by mood state and medication: a meta-analysis of 1H-MRS studies. European Neuropsychopharmacology, 47, 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Scotti-Muzzi, E., Chile, T., Vallada, H., Otaduy, M. C. G., & Soeiro-de-Souza, M. G. (2022). Association between CACNA1C gene rs100737 polymorphism and glutamatergic neurometabolites in bipolar disorder. European Neuropsychopharmacology, 59, 26–35.

    Article  CAS  PubMed  Google Scholar 

  • Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E. et al. (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a struc tured diagnostic psychiatric interview for DSMIV and ICD-10. J Clin Psychiatry, 59(Suppl 20), 22–33.

  • Sklar, P., Gabriel, S. B., Mcinnis, M. G., Bennett, P., Lim, Y., Tsan, G., et al. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Molecular Psychiatry, 7, 579–593.

    Article  CAS  PubMed  Google Scholar 

  • Soeiro-de-Souza, M. G., Andreazza, A. C., Carvalho, A. F., Machado-Vieira, R., Young, T., & Moreno, R. A. (2013). Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. International Journal of Neuropsychopharmacology, 16, 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  • Soeiro-de-Souza, M. G., Otaduy, M. C. G., Machado-Vieira, R., Moreno, R. A., Nery, F. G., Leite, C., & Lafer, B. (2018a). Anterior cingulate cortex glutamatergic metabolites and Mood Stabilizers in Euthymic Bipolar I disorder patients: a Proton magnetic resonance spectroscopy study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(12), 985–991.

    PubMed  Google Scholar 

  • Soeiro-de-Souza, M. G., Otaduy, M. C. G., Machado-Vieira, R., Moreno, R. A., Nery, F. G., Leite, C., & Lafer, B. (2018b). Lithium-associated anterior cingulate neurometabolic profile in euthymic bipolar I disorder: a 1 H-MRS study. Journal of Affective Disorders, 241, 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Stanisz, G. J., Odrobina, E. E., Pun, J., Escaravage, M., Graham, S. J., Bronskill, M. J., et al. (2005). T1, T2 relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance In Medicine, 54(3), 507–512. https://doi.org/10.1002/mrm.20605

    Article  PubMed  Google Scholar 

  • Stern, A. J., Savostyanova, A. A., Goldman, A., Barnett, A. S., van der Veen, J. W. C., Callicott, J. H., Mattay, V. S., Weinberger, D. R., & Marenco, S. (2008). Impact of the brain derived neurotrophic factor Val66Met polymorphism on levels of hippocampal N-Acetyl aspartate assessed by magnetic resonance spectroscopic imaging at 3 Tesla. Biological Psychiatry, 15(10), 856–862.

    Article  Google Scholar 

  • Stork, C., & Renshaw, P. F. (2005). Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Molecular Psychiatry, 10, 900–919.

    Article  CAS  PubMed  Google Scholar 

  • Strakowski, S. M., Adler, C. M., Almeida, J., Altshuler, L. L., Blumberg, H. P., Chang, K. D., et al. (2012). The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disorders, 14, 313–325.

    Article  PubMed  Google Scholar 

  • Tsai, S. J. (2018). Critical issues in BDNF Val66Met genetic studies of Neuropsychiatric Disorders. Frontiers in Molecular Neuroscience, 11, 56.

    Article  Google Scholar 

  • Vederine, F., Wessa, M., Leboyer, M., Houenou, J., (2011). A meta?analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Prog. Neuropsychopharmacol Biol. Psychiatry, 35, 1820–1826.

  • Walls, A. B., Waagepetersen, H. S., Bak, L. K., Schousboe, A., & Sonnewald, U. (2015). The glutamine–glutamate/GABA cycle: function, Regional differences in glutamate and GABA production 72 European Neuropsychopharmacology 47 (2021) 62–73 and effects of interference with GABA metabolism. Neurochem. Res. 40(2), 402–409.

  • Wei, S. W., & Berman, K. F. (2019). Ovarian hormones, genes, and the brain: the case of estradiol and the brain-derived neurotrophic factor (BDNF) gene. Neuropsychopharmacology : Official Publication Of The American College Of Neuropsychopharmacology, 44, 223–224.

    Article  PubMed  Google Scholar 

  • Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: reliability, validity and sensitivity. British Journal of Psychiatry, 133, 429–435.

    Article  CAS  Google Scholar 

  • Yu, A. C., Schousboe, A., & Hertz, L. (1982). Metabolic fate of 14 C-labeled glutamate in astrocytes in primary cultures. Journal Of Neurochemistry, 39, 954–960.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo Research Foundation. We thank the University of São Paulo for all its support and the team of researchers, patients and volunteers that participated in this long-term study. The authors report no biomedical financial interests or potential conflicts of interest.

Funding

The Sao Paulo Research Foundation (FAPESP) financed this study (2012/23796-2 and 2010/12286-8).

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design (ES-M, MCGO, MGS-S), data collection or acquisition (E-SM, TC, HV, MCGO, MGS-S), statistical analysis (ES-M and MGS-S), interpretation of results (ES-M and MGS-S), drafting the manuscript or revising it critically for important intellectual content (ES-M, MCGO, MGS-S), and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the study (E-SM, TC, HV, MCGO, MGS-S).

Corresponding author

Correspondence to Estêvão Scotti-Muzzi.

Ethics declarations

Ethical approval

The Research Ethics Committee of the University of São Paulo approved the study.

Consent to participate

Written informed consent was obtained from all study participants.

Consent to publish

All those listed as authors are qualified for authorship and all who are qualified to be authors are listed as authors on the byline.

Competing interests

None of the authors report biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scotti-Muzzi, E., Chile, T., Vallada, H. et al. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging and Behavior 17, 282–293 (2023). https://doi.org/10.1007/s11682-023-00757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-023-00757-7

Keywords

Navigation