Skip to main content

Advertisement

Log in

Classification of Parkinson’s disease using a region-of-interest- and resting-state functional magnetic resonance imaging-based radiomics approach

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

To investigate the value of combining amplitude of low-frequency fluctuations-based radiomics and the support vector machine classifier method in distinguishing patients with Parkinson’s disease from healthy controls. A total of 123 patients with Parkinson’s disease and 90 healthy controls from three centers with functional and structural MRI images were included in this study. We extracted radiomics features using the Brainnetome 246 atlas from the mean amplitude of low-frequency fluctuations maps. Two-sample t-tests and recursive feature elimination combined with support vector machine method were applied for feature selection and dimensionality reduction. We used support vector machine classifier to construct model and identify the discriminative features. The automated anatomical labeling 90 atlas and fivefold cross-validation were used to evaluate the robustness and generalization of the classifier. We found our model obtained a high classification performance with an accuracy of 78.07%, and AUC, sensitivity, and specificity of 0.8597, 78.80%, and 76.08%, respectively. We detected 7 discriminative brain subregions. The fivefold cross-validation and automated anatomical labeling 90 atlas also got high classification accuracy, and we found Brainnetome 246 atlas achieved a higher classification performance than the automated anatomical labeling 90 atlas both with tenfold and fivefold cross-validation. Our findings may help the early diagnosis of Parkinson’s disease and provide support for research on Parkinson’s disease mechanisms and clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data used in this study were obtained from three independent publicly available databases. (1) Dataset 1: Downloaded from http://dx.doi.org/10.6084/m9.figshare.1433996. (2) Dataset 2: Downloaded from http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html. (3) Dataset 3: Downloaded from https://doi.org/10.1371/journal.pone.0200623.

Abbreviations

AAL:

Automated anatomical labeling

ALFF:

Amplitude of low-frequency fluctuations

AUC:

Area under curve

CERR:

Computational Environment for Radiotherapy Research

BOLD:

Blood oxygen level-dependent

DARTEL:

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra

EPI:

Echo-planar imaging

HC:

Healthy control

IFG:

Inferior frontal gyrus

MFG:

Middle frontal gyrus

MNI:

Montreal Neurologic Institute

MRI:

Magnetic resonance imaging

PD:

Parkinson’s disease

PhG:

Parahippocampal gyrus

PoG:

Postcentral gyrus

PrG:

Precentral gyrus

ROI:

Region of interest

rs-fMRI:

Resting-state functional MRI

SFG:

Superior frontal gyrus

STG:

Superior temporal gyrus

SVM:

Support vector machine

SVM-RFE:

Recursive feature elimination combined with support vector machine

References

  • Adeli, E., Shi, F., An, L., Wee, C. Y., Wu, G., Wang, T., & Shen, D. (2016). Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage, 141, 206–219.

    PubMed  Google Scholar 

  • Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 4006.

    CAS  PubMed  Google Scholar 

  • Badea, L., Onu, M., Wu, T., Roceanu, A., & Bajenaru, O. (2017). Exploring the reproducibility of functional connectivity alterations in Parkinson’s disease. PLoS ONE, 12(11), e0188196.

    PubMed  PubMed Central  Google Scholar 

  • Barkhof, F., Haller, S., & Rombouts, S. A. (2014). Resting-state functional MR imaging: A new window to the brain. Radiology, 272(1), 29–49.

    PubMed  Google Scholar 

  • Calhoun, V. D., Wager, T. D., Krishnan, A., Rosch, K. S., Seymour, K. E., Nebel, M. B., Mostofsky, S. H., Nyalakanai, P., & Kiehl, K. (2017). The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Human Brain Mapping, 38(11), 5331–5342.

    PubMed  PubMed Central  Google Scholar 

  • Caminiti, S. P., Carli, G., Avenali, M., Blandini, F., & Perani, D. (2022). Clinical and dopamine transporter imaging trajectories in a cohort of Parkinson’s disease patients with GBA mutations. Movement Disorders, 37(1), 106–118.

    CAS  PubMed  Google Scholar 

  • Cao, X., Wang, X., Xue, C., Zhang, S., Huang, Q., & Liu, W. (2020). A Radiomics approach to predicting Parkinson’s disease by incorporating whole-brain functional activity and gray matter structure. Frontiers in Neuroscience, 14, 751.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Storrs, J., Tan, L., Mazlack, L. J., Lee, J. H., & Lu, L. J. (2014). Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach. Journal of Neuroscience Methods, 221, 22–31.

    PubMed  Google Scholar 

  • Chen, B., Wang, S., Sun, W., Shang, X., Liu, H., Liu, G., Gao, J., & Fan, G. (2017). Functional and structural changes in gray matter of parkinson’s disease patients with mild cognitive impairment. European Journal of Radiology, 93, 16–23.

    PubMed  Google Scholar 

  • Chen, X., Liao, X., Dai, Z., Lin, Q., Wang, Z., Li, K., & He, Y. (2018). Topological analyses of functional connectomics: A crucial role of global signal removal, brain parcellation, and null models. Human Brain Mapping, 39(11), 4545–4564.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Yan, T., Wang, E., Jiang, H., Tang, Y., Yu, X., Zhang, J., & Liu, C. (2020). Detecting abnormal brain regions in Schizophrenia using structural MRI via machine learning. Computational Intelligence and Neuroscience, 2020, 6405930.

    PubMed  PubMed Central  Google Scholar 

  • Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage, 178, 622–637.

    PubMed  Google Scholar 

  • Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 37(4), 1443–1458.

    PubMed  PubMed Central  Google Scholar 

  • Deasy, J. O., Blanco, A. I., & Clark, V. H. (2003). CERR: A computational environment for radiotherapy research. Medical Physics, 30(5), 979–985.

    PubMed  Google Scholar 

  • Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., Murphy, D. G., Consortium, M. A. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. Neuroimage, 49(1), 44–56.

    PubMed  Google Scholar 

  • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The human Brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526.

    PubMed  PubMed Central  Google Scholar 

  • Feng, Q., Wang, M., Song, Q., Wu, Z., Jiang, H., Pang, P., Liao, Z., Yu, E., & Ding, Z. (2019). Correlation between hippocampus MRI radiomic features and resting-state intrahippocampal functional connectivity in Alzheimer’s disease. Frontiers in Neuroscience, 13, 435.

    PubMed  PubMed Central  Google Scholar 

  • Gregory, S., Long, J. D., Tabrizi, S. J., & Rees, G. (2017). Measuring compensation in neurodegeneration using MRI. Current Opinion in Neurology, 30(4), 380–387.

    PubMed  PubMed Central  Google Scholar 

  • Gu, Q., Zhang, H., Xuan, M., Luo, W., Huang, P., Xia, S., & Zhang, M. (2016). Automatic classification on multi-modal MRI data for diagnosis of the postural instability and gait difficulty subtype of Parkinson’s disease. Journal of Parkinson’s Disease, 6(3), 545–556.

    PubMed  Google Scholar 

  • Heim, B., Krismer, F., De Marzi, R., & Seppi, K. (2017). Magnetic resonance imaging for the diagnosis of Parkinson’s disease. Journal of Neural Transmission (vienna), 124(8), 915–964.

    Google Scholar 

  • Hohenfeld, C., Werner, C. J., & Reetz, K. (2018). Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? Neuroimage Clin, 18, 849–870.

    PubMed  PubMed Central  Google Scholar 

  • Hou, Y., Luo, C., Yang, J., Ou, R., Song, W., Wei, Q., Cao, B., Zhao, B., Wu, Y., Shang, H. F., & Gong, Q. (2016). Prediction of individual clinical scores in patients with Parkinson’s disease using resting-state functional magnetic resonance imaging. Journal of the Neurological Sciences, 366, 27–32.

    PubMed  Google Scholar 

  • Hu, X., Song, X., Li, E., Liu, J., Yuan, Y., Liu, W., & Liu, Y. (2015). Altered resting-state brain activity and connectivity in depressed Parkinson’s disease. PLoS ONE, 10(7), e0131133.

    PubMed  PubMed Central  Google Scholar 

  • Hu, J., Xiao, C., Gong, D., Qiu, C., Liu, W., & Zhang, W. (2019). Regional homogeneity analysis of major Parkinson’s disease subtypes based on functional magnetic resonance imaging. Neuroscience Letters, 706, 81–87.

    CAS  PubMed  Google Scholar 

  • Huang, L. C., Wu, P. A., Lin, S. Z., Pang, C. Y., & Chen, S. Y. (2019). Graph theory and network topological metrics may be the potential biomarker in Parkinson’s disease. Journal of Clinical Neuroscience, 68, 235–242.

    PubMed  Google Scholar 

  • Huang, K., Lin, Y., Yang, L., Wang, Y., Cai, S., Pang, L., Wu, X., Huang, L., Alzheimer’s Disease Neuroimaging, I. (2020). A multipredictor model to predict the conversion of mild cognitive impairment to Alzheimer’s disease by using a predictive nomogram. Neuropsychopharmacology, 45(2), 358–366.

    PubMed  Google Scholar 

  • Ji, G. W., Zhu, F. P., Xu, Q., Wang, K., Wu, M. Y., Tang, W. W., Li, X. C., & Wang, X. H. (2020). Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: A multi-institutional study. Radiology, 294(3), 568–579.

    PubMed  Google Scholar 

  • Jiang, R., Calhoun, V. D., Cui, Y., Qi, S., Zhuo, C., Li, J., Jung, R., Yang, J., Du, Y., Jiang, T., & Sui, J. (2020). Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imaging and Behavior, 14(5), 1979–1993.

    PubMed  PubMed Central  Google Scholar 

  • Jin, D., Wang, P., Zalesky, A., Liu, B., Song, C., Wang, D., Xu, K., Yang, H., Zhang, Z., Yao, H., Zhou, B., Han, T., Zuo, N., Han, Y., Lu, J., Wang, Q., Yu, C., Zhang, X., Zhang, X., … Liu, Y. (2020). Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer’s Disease. Human Brain Mapping, 41(12), 3379–3391.

    PubMed  PubMed Central  Google Scholar 

  • Kim, J., Criaud, M., Cho, S. S., Diez-Cirarda, M., Mihaescu, A., Coakeley, S., Ghadery, C., Valli, M., Jacobs, M. F., Houle, S., & Strafella, A. P. (2017). Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain, 140(11), 2955–2967.

    PubMed  PubMed Central  Google Scholar 

  • Knudsen, K., Fedorova, T. D., Horsager, J., Andersen, K. B., Skjaerbaek, C., Berg, D., Schaeffer, E., Brooks, D. J., Pavese, N., Van Den Berge, N., & Borghammer, P. (2021). Asymmetric Dopaminergic Dysfunction in Brain-First versus Body-First Parkinson’s Disease Subtypes. Journal of Parkinson’s Disease, 11(4), 1677–1687.

    CAS  PubMed  Google Scholar 

  • Lacey, C., Ohlhauser, L., & Gawryluk, J. R. (2019). Microstructural white matter characteristics in Parkinson’s disease with depression: A diffusion tensor imaging replication study. Frontiers in Neurology, 10, 884.

    PubMed  PubMed Central  Google Scholar 

  • Lee, P. L., Chou, K. H., Lu, C. H., Chen, H. L., Tsai, N. W., Hsu, A. L., Chen, M. H., Lin, W. C., & Lin, C. P. (2018). Extraction of large-scale structural covariance networks from grey matter volume for Parkinson’s disease classification. European Radiology, 28(8), 3296–3305.

    PubMed  Google Scholar 

  • Li, Y., Liang, P., Jia, X., & Li, K. (2016). Abnormal regional homogeneity in Parkinson’s disease: A resting state fMRI study. Clinical Radiology, 71(1), e28-34.

    CAS  PubMed  Google Scholar 

  • Li, A., Zalesky, A., Yue, W., Howes, O., Yan, H., Liu, Y., Fan, L., Whitaker, K. J., Xu, K., Rao, G., Li, J., Liu, S., Wang, M., Sun, Y., Song, M., Li, P., Chen, J., Chen, Y., Wang, H., … Liu, B. (2020). A neuroimaging biomarker for striatal dysfunction in Schizophrenia. Nature Medicine, 26(4), 558–565.

    CAS  PubMed  Google Scholar 

  • Lin, W. C., Chou, K. H., Lee, P. L., Tsai, N. W., Chen, H. L., Hsu, A. L., Chen, M. H., Huang, Y. C., Lin, C. P., & Lu, C. H. (2017). Parkinson’s disease: Diagnostic utility of volumetric imaging. Neuroradiology, 59(4), 367–377.

    PubMed  Google Scholar 

  • Lin, H., Cai, X., Zhang, D., Liu, J., Na, P., & Li, W. (2020). Functional connectivity markers of depression in advanced Parkinson’s disease. Neuroimage Clin, 25, 102130.

    PubMed  Google Scholar 

  • Lu, H., Arshad, M., Thornton, A., Avesani, G., Cunnea, P., Curry, E., Kanavati, F., Liang, J., Nixon, K., Williams, S. T., Hassan, M. A., Bowtell, D. D. L., Gabra, H., Fotopoulou, C., Rockall, A., & Aboagye, E. O. (2019). A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nature Communications, 10(1), 764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mo, J., Liu, Z., Sun, K., Ma, Y., Hu, W., Zhang, C., Wang, Y., Wang, X., Liu, C., Zhao, B., Zhang, K., Zhang, J., & Tian, J. (2019). Automated detection of hippocampal sclerosis using clinically empirical and radiomics features. Epilepsia, 60(12), 2519–2529.

    PubMed  Google Scholar 

  • Mu, X., Wang, Z., Nie, B., Duan, S., Ma, Q., Dai, G., Wu, C., Dong, Y., Shan, B., & Ma, L. (2018). Altered regional and circuit resting-state activity in patients with occult spastic diplegic cerebral palsy. Pediatrics and Neonatology, 59(4), 345–351.

    PubMed  Google Scholar 

  • Nakano, Y., Hirano, S., Kojima, K., Li, H., Sakurai, T., Suzuki, M., Tai, H., Furukawa, S., Sugiyama, A., Yamanaka, Y., Yamamoto, T., Iimori, T., Yokota, H., Mukai, H., Horikoshi, T., Uno, T., & Kuwabara, S. (2022). Dopaminergic correlates of regional cerebral blood flow in Parkinsonian disorders. Movement Disorders.

  • Nie, P., Yang, G., Wang, Z., Yan, L., Miao, W., Hao, D., Wu, J., Zhao, Y., Gong, A., Cui, J., Jia, Y., & Niu, H. (2020). A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. European Radiology, 30(2), 1274–1284.

    PubMed  Google Scholar 

  • O’Callaghan, C., Hornberger, M., Balsters, J. H., Halliday, G. M., Lewis, S. J., & Shine, J. M. (2016). Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity. Brain, 139(Pt 3), 845–855.

    PubMed  Google Scholar 

  • Oh, K., Kim, W., Shen, G., Piao, Y., Kang, N. I., Oh, I. S., & Chung, Y. C. (2019). Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophrenia Research, 212, 186–195.

    PubMed  Google Scholar 

  • Pei, C., Sun, Y., Zhu, J., Wang, X., Zhang, Y., Zhang, S., Yao, Z., & Lu, Q. (2020). Ensemble learning for early-response prediction of antidepressant treatment in major depressive disorder. Journal of Magnetic Resonance Imaging, 52(1), 161–171.

    PubMed  Google Scholar 

  • Peng, B., Wang, S., Zhou, Z., Liu, Y., Tong, B., Zhang, T., & Dai, Y. (2017). A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neuroscience Letters, 651, 88–94.

    CAS  PubMed  Google Scholar 

  • Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry, 77(5), 534–540.

    PubMed  PubMed Central  Google Scholar 

  • Rashid, B., & Calhoun, V. (2020). Towards a brain-based predictome of mental illness. Human Brain Mapping, 41(12), 3468–3535.

    PubMed  PubMed Central  Google Scholar 

  • Reimao, S., Pita Lobo, P., Neutel, D., Correia Guedes, L., Coelho, M., Rosa, M. M., Ferreira, J., Abreu, D., Goncalves, N., Morgado, C., Nunes, R. G., Campos, J., & Ferreira, J. J. (2015a). Substantia nigra neuromelanin magnetic resonance imaging in de novo Parkinson’s disease patients. European Journal of Neurology, 22(3), 540–546.

    CAS  PubMed  Google Scholar 

  • Reimao, S., Pita Lobo, P., Neutel, D., Guedes, L. C., Coelho, M., Rosa, M. M., Azevedo, P., Ferreira, J., Abreu, D., Goncalves, N., Nunes, R. G., Campos, J., & Ferreira, J. J. (2015b). Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson’s disease. Movement Disorders, 30(7), 953–959.

    PubMed  Google Scholar 

  • Rispoli, V., Schreglmann, S. R., & Bhatia, K. P. (2018). Neuroimaging advances in Parkinson’s disease. Current Opinion in Neurology, 31(4), 415–424.

    PubMed  Google Scholar 

  • Rubbert, C., Mathys, C., Jockwitz, C., Hartmann, C. J., Eickhoff, S. B., Hoffstaedter, F., Caspers, S., Eickhoff, C. R., Sigl, B., Teichert, N. A., Sudmeyer, M., Turowski, B., Schnitzler, A., & Caspers, J. (2019). Machine-learning identifies Parkinson’s disease patients based on resting-state between-network functional connectivity. British Journal of Radiology, 92(1101), 20180886.

    PubMed  PubMed Central  Google Scholar 

  • Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., Gao, S., Shen, X., O’Connor, D., Barron, D. S., Yip, S. W., Rosenberg, M. D., & Constable, R. T. (2019). Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage, 193, 35–45.

    PubMed  Google Scholar 

  • Shi, W. Q., Wu, W., Ye, L., Jiang, N., Liu, W. F., Shu, Y. Q., Su, T., Lin, Q., Min, Y. L., Li, B., Zhu, P. W., & Shao, Y. (2019). Altered spontaneous brain activity patterns in patients with corneal ulcer using amplitude of low-frequency fluctuation: An fMRI study. Experimental and Therapeutic Medicine, 18(1), 125–132.

    PubMed  PubMed Central  Google Scholar 

  • Shi, D., Zhang, H., Wang, S., Wang, G., & Ren, K. (2021). Application of functional magnetic resonance imaging in the diagnosis of Parkinson’s disease: A histogram analysis. Front Aging Neurosci, 13, 624731.

    PubMed  PubMed Central  Google Scholar 

  • Sun, H., Chen, Y., Huang, Q., Lui, S., Huang, X., Shi, Y., Xu, X., Sweeney, J. A., & Gong, Q. (2018). Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: A radiomics analysis. Radiology, 287(2), 620–630.

    PubMed  Google Scholar 

  • Tang, Z., Liu, Z., Li, R., Yang, X., Cui, X., Wang, S., Yu, D., Li, H., Dong, E., & Tian, J. (2017). Identifying the white matter impairments among ART-naive HIV patients: A multivariate pattern analysis of DTI data. European Radiology, 27(10), 4153–4162.

    PubMed  Google Scholar 

  • Tian, Z. Y., Qian, L., Fang, L., Peng, X. H., Zhu, X. H., Wu, M., Wang, W. Z., Zhang, W. H., Zhu, B. Q., Wan, M., Hu, X., & Shao, J. (2020). Frequency-specific changes of resting brain activity in Parkinson’s disease: A machine learning approach. Neuroscience, 436, 170–183.

    CAS  PubMed  Google Scholar 

  • Tuovinen, N., Seppi, K., de Pasquale, F., Muller, C., Nocker, M., Schocke, M., Gizewski, E. R., Kremser, C., Wenning, G. K., Poewe, W., Djamshidian, A., Scherfler, C., & Seki, M. (2018). The reorganization of functional architecture in the early-stages of Parkinson’s disease. Parkinsonism & Related Disorders, 50, 61–68.

    Google Scholar 

  • Villain, N., Bera, G., Habert, M. O., Kas, A., Aubert, J., Jaubert, O., Valabregue, R., Fernandez-Vidal, S., Corvol, J. C., Mangone, G., Lehericy, S., Vidailhet, M., Grabli, D., Group, I. S. (2021). Dopamine denervation in the functional territories of the striatum: A new MR and atlas-based (123)I-FP-CIT SPECT quantification method. Journal of Neural Transmission (Vienna), 128(12), 1841–1852.

    CAS  Google Scholar 

  • Wang, L., Liu, Y., Zeng, X., Cheng, H., Wang, Z., & Wang, Q. (2020a). Region-of-Interest based sparse feature learning method for Alzheimer’s disease identification. Computer Methods and Programs in Biomedicine, 187, 105290.

    PubMed  Google Scholar 

  • Wang, Y., Sun, K., Liu, Z., Chen, G., Jia, Y., Zhong, S., Pan, J., Huang, L., & Tian, J. (2020b). Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: A radiomics analysis. Cerebral Cortex, 30(3), 1117–1128.

    PubMed  Google Scholar 

  • Wei, L., Zhang, J., Long, Z., Wu, G. R., Hu, X., Zhang, Y., & Wang, J. (2014). Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson’s disease: A resting state fMRI study. PLoS ONE, 9(10), e108124.

    PubMed  PubMed Central  Google Scholar 

  • Wottschel, V., Chard, D. T., Enzinger, C., Filippi, M., Frederiksen, J. L., Gasperini, C., Giorgio, A., Rocca, M. A., Rovira, A., De Stefano, N., Tintore, M., Alexander, D. C., Barkhof, F., Ciccarelli, O., group, M. s., the Euro, P. c. (2019). SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage Clinical, 24, 102011.

    PubMed  PubMed Central  Google Scholar 

  • Xia, W., Chen, Y. C., Luo, Y., Zhang, D. F., Chen, H., Ma, J., & Yin, X. (2018). Decreased spontaneous brain activity and functional connectivity in Type 1 diabetic patients without microvascular complications. Cellular Physiology and Biochemistry, 51(6), 2694–2703.

    CAS  PubMed  Google Scholar 

  • Xu, Z., Zhang, J., Wang, D., Wang, T., Zhang, S., Ren, X., Zhu, X., Kamiya, A., Fang, J., & Qu, M. (2019). Altered brain function in drug-naive major depressive disorder patients with early-life maltreatment: A resting-state fMRI study. Front Psychiatry, 10, 255.

    PubMed  PubMed Central  Google Scholar 

  • Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339–351.

    PubMed  Google Scholar 

  • Yang, X., Hu, X., Tang, W., Li, B., Yang, Y., Gong, Q., & Huang, X. (2019). Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data. BMC Psychiatry, 19(1), 210.

    PubMed  PubMed Central  Google Scholar 

  • Yang, L., Yan, Y., Li, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2020). Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: A resting-state fMRI study. Brain Imaging and Behavior, 14(6), 2187–2201.

    PubMed  Google Scholar 

  • Zarogianni, E., Storkey, A. J., Johnstone, E. C., Owens, D. G., & Lawrie, S. M. (2017). Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophrenia Research, 181, 6–12.

    PubMed  Google Scholar 

  • Zhang, Y., & Liu, S. (2018). Analysis of structural brain MRI and multi-parameter classification for Alzheimer’s disease. Biomed Tech (berl), 63(4), 427–437.

    Google Scholar 

  • Zhang, Y., Liu, S., & Yu, X. (2020). Individual identification for different age groups using functional connectivity strength. Neurological Sciences, 41(2), 417–426.

    PubMed  Google Scholar 

  • Zhao, K., Ding, Y., Han, Y., Fan, Y., Alexander-Bloch, A. F., Han, T., Jin, D., Liu, B., Lu, J., Song, C., Wang, P., Wang, D., Wang, Q., Xu, K., Yang, H., Yao, H., Zheng, Y., Yu, C., Zhou, B., … Liu, Y. (2020a). Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: Diagnosis, longitudinal progress and biological basis. Science Bulletin, 65(13), 1103–1113.

    CAS  Google Scholar 

  • Zhao, L., Gong, J., Xi, Y., Xu, M., Li, C., Kang, X., Yin, Y., Qin, W., Yin, H., & Shi, M. (2020b). MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma. European Radiology, 30(1), 537–546.

    PubMed  Google Scholar 

  • Zhou, B., An, D., Xiao, F., Niu, R., Li, W., Li, W., Tong, X., Kemp, G. J., Zhou, D., Gong, Q., & Lei, D. (2020). Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging. Frontiers in Medicine, 14(5), 630–641.

    Google Scholar 

Download references

Acknowledgements

The authors thank the data authors for providing access to the data used in our study. This work is supported by Scientific Research Foundation for Advanced Talents, Xiang'an Hospital of Xiamen University (NO. PM201809170011). We thank Editage Academic Editing for assistance with English editing that greatly improved the manuscript.

Funding

This work is supported by Scientific Research Foundation for Advanced Talents, Xiang'an Hospital of Xiamen University (NO. PM201809170011).

Author information

Authors and Affiliations

Authors

Contributions

DS conducted the experiment, performed the data processing and analysis, and wrote the manuscript. XY, YL, HZ, GW and SW collected the data and performed the data processing and analysis.KR supervised the whole including experiments and manuscript writing. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Ke Ren.

Ethics declarations

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The data of this study were obtained from independent publicly available databases, and the data was approved by the ethics committee of the data collection agency.

Consent to participate

All subjects agreed to participate in this study. Written informed consent was obtained from all subjects in this study.

Consent to publish

All authors approved the publication of this manuscript.

Competing interests

None of the authors have a conflict of interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Yao, X., Li, Y. et al. Classification of Parkinson’s disease using a region-of-interest- and resting-state functional magnetic resonance imaging-based radiomics approach. Brain Imaging and Behavior 16, 2150–2163 (2022). https://doi.org/10.1007/s11682-022-00685-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00685-y

Keywords

Navigation