Skip to main content
Log in

Investigation of baseline attention, executive control, and performance variability in female varsity athletes

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

To examine attention, executive control, and performance variability in healthy varsity athletes and identify unique resting-state functional connectivity (rsFC) patterns associated with measures of speed, stability, and attention. A sample of 29 female university varsity athletes completed cognitive testing using the Attention Network Test- Interactions (ANT-I) and underwent resting-state functional MRI (rsfMRI) scans. Performance was characterized by examining mean reaction time (RT), variability in performance (ISD), and attention network scores on the ANT-I. RsfMRI data were analyzed using an independent component analysis (ICA) in the frontoparietal (FPN), dorsal attention (DAN), default mode, (DMN), salience (SN), and sensorimotor (SMN) networks. Group-level analyses using the performance variables of interest were conducted. Athletes’ performance on the ANT-I revealed a main effect of orienting and executive control (ps<0.001; partial η2 = 0.68 and 0.89, respectively), with performance facilitated (i.e., faster RT) when athletes were presented with valid cues and congruent flankers. Alerting, orienting, and executive control performance were associated with differences in rsFC within the SN, DMN, and FPN, respectively. Slower RTs were associated with greater rsFC between DAN and bilateral postcentral gyri (p<.001), whereas more stable performance was associated with greater FC between the SMN and the left precuneus (p<.05). Consistent with prior studies, we observed that efficiency in alerting, orienting, and executive control aspects of attention was associated with differences in rsFC in regions associated with the SN, DMS, and FPN. In addition, we observed differential patterns of rsFC for overall speed and variability of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116. https://doi.org/10.1038/nn1003

    Article  CAS  PubMed  Google Scholar 

  • Bellgrove, M. A., Hawi, Z., Kirley, A., Gill, M., & Robertson, I. H. (2005). Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: Sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia, 43(13), 1847–1857. https://doi.org/10.1016/j.neuropsychologia.2005.03.011

    Article  PubMed  Google Scholar 

  • Bellgrove, M. A., Eramudugolla, R., Newman, D. P., Vance, A., & Mattingley, J. B. (2013). Influence of attentional load on spatial attention in acquired and developmental disorders of attention. Neuropsychologia, 51(6), 1085–1093. https://doi.org/10.1016/j.neuropsychologia.2013.01.019

    Article  PubMed  Google Scholar 

  • Broshek, D. K., Kaushik, T., Freeman, J. R., Erlanger, D., Webbe, F., & Barth, J. T. (2005). Sex differences in outcome following sports-related concussion. Journal of Neurosurgery, 102(5), 856–863. https://doi.org/10.3171/jns.2005.102.5.0856

    Article  PubMed  Google Scholar 

  • Burton, H., Abend, N. S., MacLeod, A. M. K., Sinclair, R. J., Snyder, A. Z., & Raichle, M. E. (1999). Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: A positron emission tomography study. Cerebral Cortex, 9(7), 662–674. https://doi.org/10.1093/cercor/9.7.662

    Article  CAS  PubMed  Google Scholar 

  • Burton, C. L., Hultsch, D. F., Strauss, E., & Hunter, M. A. (2002). Intraindividual variability in physical and emotional functioning: Comparison of adults with traumatic brain injuries and healthy adults. Clinical Neuropsychologist, 16(3), 264–279. https://doi.org/10.1076/clin.16.3.264.13854

    Article  PubMed  Google Scholar 

  • Burton, C. L., Strauss, E., Hultsch, D. F., Moll, A., & Hunter, M. A. (2006). Intraindividual variability as a marker of neurological dysfunction: A comparison of Alzheimer’s disease and Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 28(1), 67–83. https://doi.org/10.1080/13803390490918318

    Article  PubMed  Google Scholar 

  • Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The three attentional networks: on their independence and interactions. Brain and Cognition, 54(3), 225–227. https://doi.org/10.1016/j.bandc.2004.02.012

    Article  PubMed  Google Scholar 

  • Callejas, A., Lupiàñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 27–37. https://doi.org/10.1007/s00221-005-2365-z

    Article  PubMed  Google Scholar 

  • Chang, Y. K., Pesce, C., Chiang, Y. T., Kuo, C. Y., & Fong, D. Y. (2015). Antecedent acute cycling exercise affects attention control: an ERP study using attention network test. Frontiers in human neuroscience, 9, 156.

    Article  Google Scholar 

  • Chiu, Y. C., & Yantis, S. (2009). A domain-independent source of cognitive control for task sets: Shifting spatial attention and switching categorization rules. Journal of Neuroscience, 29(12), 3930–3938. https://doi.org/10.1523/JNEUROSCI.5737-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Cole, W. R., Gregory, E., Arrieux, J. P., & Haran, F. J. (2017). Intra-individual cognitive variability: an examination of ANAM4 TBI-MIL simple reaction time data from service members with and without mild traumatic brain injury. Journal of the International Neuropsychological Society, 1–6. https://doi.org/10.1017/s1355617717000856

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological psychiatry, 62(8), 847–855.

    Article  CAS  Google Scholar 

  • Covassin, T., Schatz, P., & Swanik, C. B. (2007). Sex differences in neuropsychological function and post-concussion symptoms of concussed collegiate athletes. Neurosurgery, 61(2), 345–350. https://doi.org/10.1227/01.NEU.0000279972.95060.CB

    Article  PubMed  Google Scholar 

  • Dumais, K. M., Chernyak, S., Nickerson, L. D., & Janes, A. C. (2018). Sex differences in default mode and dorsal attention network engagement. PLoS One, 13(6).

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the national academy of sciences, 113(28), 7900–7905.

  • Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712–2723. https://doi.org/10.1093/cercor/bhs261

    Article  PubMed  Google Scholar 

  • Fan, J., Mccandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2000). Testing the Efficiency and Independence of Attentional Networks 340–347

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(1), 471–479. https://doi.org/10.1017/CBO9781107415324.004

    Article  PubMed  Google Scholar 

  • Gotts, S. J., Saad, Z. S., Jo, H. J., Wallace, G. L., Cox, R. W., & Martin, A. (2013). The perils of global signal regression for group comparisons: A case study of Autism Spectrum Disorders. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2013.00356

  • Gotts, S. J., Gilmore, A. W., & Martin, A. (2020). Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. NeuroImage, 205. https://doi.org/10.1016/j.neuroimage.2019.116289

  • Grosbras, M. H., Laird, A. R., & Paus, T. (2005). Cortical regions involved in eye movements, shifts of attention, and gaze perception. Human Brain Mapping, 25(1), 140–154. https://doi.org/10.1002/hbm.20145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage, 50(3), 1313–1319. https://doi.org/10.1016/j.neuroimage.2009.12.109

  • Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: Individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–240. https://doi.org/10.1037/0096-3445.136.2.217

    Article  Google Scholar 

  • Hietanen, J. K., Nummenmaa, L., Nyman, M. J., Parkkola, R., & Hämäläinen, H. (2006). Automatic attention orienting by social and symbolic cues activates different neural networks: An fMRI study. NeuroImage, 33(1), 406–413. https://doi.org/10.1016/j.neuroimage.2006.06.048

    Article  PubMed  Google Scholar 

  • Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307–314. https://doi.org/10.1016/S0167-8760(03)00080-1

    Article  PubMed  Google Scholar 

  • Huertas, F., Zahonero, J., Sanabria, D., & Lupiáñez, J. (2011). Functioning of the attentional networks at rest vs. during acute bouts of aerobic exercise. Journal of Sport and Exercise Psychology, 33(5), 649–665.

  • IBM (2016) SPSS Statistics for Windows, Version 23. Armonk, NY: IBM Corp USA

  • Irick, E. (2015). Student-athlete participation: 1981-82-2014–15; NCAA sports sponsorship and participation rates report. National Collegiate Athletic Association

  • Ishigami, Y., Fisk, J. D., Wojtowicz, M., & Klein, R. M. (2013). al Repeated measurement of the attention components of patients with multiple sclerosis using the Attention Network Test-Interaction (ANT-I): Stability, isolability, robustness, and reliability. Journal of Neuroscience Methods, 216(1), 1–9. https://doi.org/10.1016/j.jneumeth.2013.02.013

    Article  PubMed  Google Scholar 

  • Kornelsen, J., Wilson, A., Labus, J. S., Witges, K., Mayer, E. A., & Bernstein, C. N. (2020). Brain Resting-State Network Alterations Associated With Crohn’s Disease. Frontiers in Neurology, 11, 48. https://doi.org/10.3389/fneur.2020.00048

    Article  PubMed  PubMed Central  Google Scholar 

  • Laumann, T. O., Ortega, M., Hoyt, C. R., Seider, N. A., Siegel, J. S., Nguyen, A. L., & Dosenbach, N. U. (2021). Brain network reorganisation in an adolescent after bilateral perinatal strokes. The Lancet Neurology, 20(4), 255–256.

    Article  Google Scholar 

  • Lee, J., Lee, D., Namkoong, K., & Jung, Y. C. (2020). Aberrant posterior superior temporal sulcus functional connectivity and executive dysfunction in adolescents with internet gaming disorder. Journal of Behavioural Addition, 9(3), 589–597

    Article  Google Scholar 

  • MacDonald, S. W. S., Nyberg, L., & Bäckman, L. (2006). Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends in Neurosciences, 29(8), 474–480. https://doi.org/10.1016/j.tins.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, S. W. S., Li, S. C., & Bäckman, L. (2009). Neural Underpinnings of Within-Person Variability in Cognitive Functioning. Psychology and Aging, 24(4), 792–808. https://doi.org/10.1037/a0017798

    Article  PubMed  Google Scholar 

  • Majerske, C. W., Mihalik, J. P., Ren, D., Collins, M. W., Reddy, C. C., Lovell, M. R., & Wagner, A. K. (2008). Concussion in sports: Postconcussive activity levels, symptoms, and neurocognitive performance. Journal of Athletic Training, 43(3), 265–274. https://doi.org/10.4085/1062-6050-43.3.265

    Article  PubMed  PubMed Central  Google Scholar 

  • Markett, S., Reuter, M., Montag, C., Voigt, G., Lachmann, B., Rudorf, S. ... Weber, B. (2014). Assessing the function of the fronto-parietal attention network: Insights from resting-state fMRI and the attentional network test. Human Brain Mapping, 35(4), 1700–1709. https://doi.org/10.1002/hbm.22285

  • Mazerolle, E. L., Wojtowicz, M. A., Omisade, A., & Fisk, J. D. (2013). Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis. NeuroImage: Clinical, 2(1), 894–902. https://doi.org/10.1016/j.nicl.2013.06.012

    Article  Google Scholar 

  • Mima, T., Nagamine, T., Nakamura, K., & Shibasaki, H. (1998). Attention modulates both primary and second somatosensory cortical activities in humans: A magnetoencephalographic study. Journal of Neurophysiology, 80(4), 2215–2221. https://doi.org/10.1152/jn.1998.80.4.2215

    Article  CAS  PubMed  Google Scholar 

  • Mirsky, A. F., & Duncan, C. C. (2001). A nosology of disorders of attention. Annals of the New York Academy of Sciences, 931, 17–32. https://doi.org/10.1111/j.1749-6632.2001.tb05771.x

    Article  CAS  PubMed  Google Scholar 

  • Mondragón, J. D., Maurits, N. M., & De Deyn, P. P. (2021). Functional connectivity differences in Alzheimer’s disease and amnestic mild cognitive impairment associated with AT(N) classification and anosognosia. Neurobiology of Aging, 101, 22–39. https://doi.org/10.1016/j.neurobiolaging.2020.12.021

    Article  CAS  PubMed  Google Scholar 

  • Moratal, C., Lupiáñez, J., Ballester, R., & Huertas, F. (2020). Deliberate soccer practice modulates attentional functioning in children. Frontiers in Psychology, 11, 761.

    Article  Google Scholar 

  • Murphy, K., Birn, R. M., Handwerker, D., Jones, T., & Bandettini, P. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036

    Article  PubMed  Google Scholar 

  • Nickerson, L. D., Smith, S. M., Öngür, D., & Beckmann, C. F. (2017). Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Frontiers in Neuroscience, 11(115)

  • Parks, A. C., Moore, R. D., Wu, C. T., Broglio, S. P., Covassin, T., Hillman, C. H., & Pontifex, M. B. (2015). The association between a history of concussion and variability in behavioral and neuroelectric indices of cognition. International Journal of Psychophysiology, 98(3), 426–434. https://doi.org/10.1016/j.ijpsycho.2015.08.006

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325

    Article  CAS  PubMed  Google Scholar 

  • Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23. https://doi.org/10.1146/annurev.psych.58.110405.085516

    Article  PubMed  Google Scholar 

  • Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129, 193–199. https://doi.org/10.1196/annals.1417.011

    Article  PubMed  Google Scholar 

  • Raichle, M. E. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. PNAS, 98(2), 686–682. https://doi.org/10.1016/j.msea.2006.02.358

    Article  CAS  Google Scholar 

  • Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2(1), 25–32. https://doi.org/10.1089/brain.2012.0080

    Article  PubMed  PubMed Central  Google Scholar 

  • Sali, A. W., Courtney, S. M., & Yantis, S. (2016). Spontaneous fluctuations in the flexible control of covert attention. Journal of Neuroscience, 36(2), 445–454. https://doi.org/10.1523/JNEUROSCI.2323-15.2016

    Article  CAS  PubMed  Google Scholar 

  • Sollmann, N., Echlin, P. S., Schultz, V., Viher, P. V., Lyall, A. E., Tripodis, Y. ... Koerte, I. K. (2018). Sex differences in white matter alterations following repetitive subconcussive head impacts in collegiate ice hockey players. NeuroImage: Clinical, 17, 642–649. https://doi.org/10.1016/j.nicl.2017.11.020

  • Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53(1), 303–317. https://doi.org/10.1016/j.neuroimage.2010.06.016

    Article  PubMed  Google Scholar 

  • Spreng, R. N., Fernández-Cabello, S., Turner, G. R., & Stevens, W. D. (2019). Take a deep breath: Multiecho fMRI denoising effectively removes head motion artifacts, obviating the need for global signal regression. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 116, Issue 39, pp. 19241–19242). National Academy of Sciences. https://doi.org/10.1073/pnas.1909848116

  • Verburgh, L., Scherder, E. J. A., Van Lange, P. A. M., & Oosterlaan, J. (2016). Do elite and amateur soccer players outperform non-athletes on neurocognitive functioning? A study among 8-12 year old children. PLoS ONE, 11(12), 1–12. https://doi.org/10.1371/journal.pone.0165741

    Article  CAS  Google Scholar 

  • Verburgh, L., Scherder, E. J., van Lange, P. A., & Oosterlaan, J. (2014). Executive functioning in highly talented soccer players. PloS one, 9(3), e91254.

  • Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). Executive functions predict the success of top-soccer players. PLoS ONE, 7(4), 1–5. https://doi.org/10.1371/journal.pone.0034731

    Article  CAS  Google Scholar 

  • Wang, B., Guo, W., & Zhou, C. (2016). Selective enhancement of attentional networks in college table tennis athletes: A preliminary investigation. PeerJ, 2016(12). https://doi.org/10.7717/peerj.2762

  • Whitfield-Gabrieli, S., & Nieto-castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. https://doi.org/10.1089/brain.2012.0073

    Article  PubMed  Google Scholar 

  • Wojtowicz, M. A., Ishigami, Y., Mazerolle, E. L., & Fisk, J. D. (2014). Stability of intraindividual variability as a marker of neurologic dysfunction in relapsing remitting multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 36(5), 455–463

    Article  Google Scholar 

  • Woods, E. A., Hernandez, A. E., Wagner, V. E., & Beilock, S. L. (2014). Expert athletes activate somatosensory and motor planning regions of the brain when passively listening to familiar sports sounds. Brain and Cognition, 87(1), 122–133. https://doi.org/10.1016/j.bandc.2014.03.007

    Article  PubMed  Google Scholar 

  • Xiao, M., Ge, H., Khundrakpam, B. S., Xu, J., Bezgin, G., Leng, Y. … Liu, S. (2016). Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks. Frontiers in Behavioral Neuroscience, 10(October), 1–12. https://doi.org/10.3389/fnbeh.2016.00194

    Article  Google Scholar 

  • Xu, J., Yin, X., Ge, H., Han, Y., Pang, Z., Tang, Y. … Liu, S. (2015). Attentional performance is correlated with the local regional efficiency of intrinsic brain networks. Frontiers in Behavioral Neuroscience, 9(JULY), 1–11. https://doi.org/10.3389/fnbeh.2015.00200

    Article  Google Scholar 

  • Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995–1002

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions included conception and study design (SR, AW, MW), data collection and/or acquisition (MW, SR, AR, LS, DG, WDS), statistical analysis (SR, AW, MW), interpretation of results (MW, SR, AW, LS, DG, WDS), drafting the manuscript and/or revising critically for important intellectual content (SR, AW, MW, LS, DG, WDS, AR), and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (all authors).

Corresponding author

Correspondence to Magdalena Wojtowicz.

Ethics declarations

This study was approved by the Human Participants Review Sub-Committee of York University’s Ethics Review Board. Participants gave written consent to complete the imaging and behavioural components of the study.

Conflict of interest

There are no conflicts of interest to disclose for the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, S.D., Wilson, A., Rahimi, A. et al. Investigation of baseline attention, executive control, and performance variability in female varsity athletes. Brain Imaging and Behavior 16, 1636–1645 (2022). https://doi.org/10.1007/s11682-022-00635-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00635-8

Keywords

Navigation