Skip to main content
Log in

Superior frontal gyrus and middle temporal gyrus connectivity mediates the relationship between neuroticism and thought suppression

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Thought suppression, which is defined as an effort “not to think about” a particular thought, is essential to maintain good mental health. Despite previous functional imaging studies on thought suppression and related functional activity, the neural basis of thought suppression in individual difference is still unclear. Many studies have focused on the relationship between neuroticism and thought suppression; however, the neural basis of this relationship is not well known. Thus, in the present study, we investigated the neural basis of thought suppression and further explored the neural mechanisms underlying the relationship between neuroticism and thought suppression. The first step was to use voxel-based morphometry (VBM) to investigate the neuroanatomical basis of thought suppression in healthy subjects. We found a significant positive correlation between thought suppression and the gray matter volume (GMV) of the right superior frontal gyrus (SFG). The second step was to use resting-state functional connectivity (rsFC) to investigate the neural functional basis of thought suppression. The results showed that thought suppression was positively correlated with rsFC between the right SFG and the left middle temporal gyrus (MTG). Interestingly, the relationship between neuroticism and thought suppression was mediated by the strength of rsFC between the right SFG and the left MTG. The results suggest that better ability to suppress unwanted intrusive thoughts is supported by greater GMV of the right SFG and stronger functional connectivity between the SFG and MTG. They also indicate that weak rsFC between the SFG and MTG can partly explain the negative association between neuroticism and thought suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, M. C., Bunce, J. G., & Barbas, H. (2016). Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiology of Learning & Memory, 134, 145–161.

    Article  Google Scholar 

  • Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 18(6), 279–292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., et al. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303(5655), 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Axmacher, N., Draguhn, A., Elger, C. E., & Fell, J. (2009). Memory processes during sleep: Beyond the standard consolidation theory. Cellular & Molecular Life Sciences, 66(14), 2285–2297.

    Article  CAS  Google Scholar 

  • Benoit, D., & D. J., & Anderson, M. C. (2016). Reducing future fears by suppressing the brain mechanisms underlying episodic simulation. Proceedings of the National Academy of Sciences of the United States of America, 113(52).

  • Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 76–248(2), 450–460.

    Article  PubMed Central  CAS  Google Scholar 

  • Biswal, B. B., Kylen, J. V., & Hyde, J. S. (2015). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. Nmr in Biomedicine, 10(4-5), 165–170.

    Article  Google Scholar 

  • BjØrnebekk, A., Fjell, A. M., Walhovd, K. B., Grydeland, H., Torgersen, S., & Westlye, L. T. (2013). Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample. Neuroimage., 65, 194–208.

    Article  PubMed  Google Scholar 

  • Catarino, A., Küpper, C. S., Werner-Seidler, A., Dalgleish, T., & Anderson, M. C. (2015). Failing to forget: Inhibitory-control deficits compromise memory suppression in posttraumatic stress disorder. Psychological Science, 26(5), 604.

    Article  PubMed  Google Scholar 

  • Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., et al. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474–483.

    Article  PubMed  Google Scholar 

  • Costa, P. T., & Mccrae, R. R. (1992). Neo Personality Inventory – Revised (NEO PI-R).

    Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depue Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317(5835), 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Depue, B. E., Burgess, G. C., Willcutt, E. G., Ruzic, L., & Banich, M. T. (2010). Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: Evidence from deficits in individuals with ADHD. Neuropsychologia, 48(13), 3909–3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming, S. M., Weil, R. S., Zoltan, N., Dolan, R. J., & Geraint, R. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage, 111, 611–621.

    Article  PubMed  Google Scholar 

  • Gagnepain, P., Hulbert, J., & Anderson, M. C. (2017). Parallel regulation of memory and emotion supports the suppression of intrusive memories. Journal of Neuroscience, 37(27), 6423–6441.

    Article  CAS  PubMed  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., & Henson, R. N. A. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1), 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 100(1), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Jardine, R., Martin, N. G., & Henderson, A. S. (2010). Genetic covariation between neuroticism and the symptoms of anxiety and depression. Genetic Epidemiology, 1(2), 89–107.

    Article  Google Scholar 

  • Joormann, J., & Meghan, E. Q. (2014). Cognitive processes and emotion regulation in depression. Depression & Anxiety, 31(4), 308–315.

    Article  PubMed  Google Scholar 

  • Kendler, K. S., Kuhn, J., & Prescott, C. A. (2004). The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression. American Journal of Psychiatry, 161(4), 631.

    Article  PubMed  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    Article  CAS  PubMed  Google Scholar 

  • Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2015). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. Journal of Neuroscience, 29(46), 14496–14505.

    Article  CAS  Google Scholar 

  • Levy, B. J., & Anderson, M. C. (2008). Individual differences in the suppression of unwanted memories: The executive deficit hypothesis. Acta Psychologica, 127(3), 623–635.

    Article  PubMed  Google Scholar 

  • Li, W., Qin, W., Liu, H., Fan, L., Wang, J., Jiang, T., et al. (2013). Subregions of the human superior frontal gyrus and their connections. Neuroimage, 78(9), 46–58.

    Article  PubMed  Google Scholar 

  • Liu, Y., Lin, W., Liu, C., Luo, Y., Wu, J., Bayley, P. J., et al. (2016). Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. Nature Communications, 7, 13375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, F. Y., Yang, W. J., Zhang, Q. L., & Qiu, J. (2017). Thought control ability is different from rumination in explaining the association between neuroticism and depression: A Three-Study Replication. Front Psychol, 8.

  • Luciano, J. V., Algarabel, S., Tomás, J. M., & Martínez, J. L. (2005). Development and validation of the thought control ability questionnaire. Personality & Individual Differences, 38(5), 997–1008.

    Article  Google Scholar 

  • Luo, J., Zhou, Y., Chen, W., Pan, Y., & Zhao, S. (2016). A reliability generalization of the big-five factor personality tests in China. Psychological Development & Education, 32(1), 8.

    CAS  Google Scholar 

  • Müller, V. I., Langner, R., Cieslik, E. C., Rottschy, C., & Eickhoff, S. B. (2015). Interindividual differences in cognitive flexibility: Influence of gray matter volume, functional connectivity and trait impulsivity. Brain Structure & Function, 220(4), 2401–2414.

    Article  Google Scholar 

  • Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Opinion in Neurobiology, 11(2), 194–201.

    Article  CAS  PubMed  Google Scholar 

  • Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270(5233), 102–105.

    Article  CAS  PubMed  Google Scholar 

  • Masako, O., Haruka, D., Koji, S., Kazuhiro, T., Takashi, A., Ichiro, O., et al. (2004). Multimodal assessment of cortical activation during apple peeling by nirs and fmri. Neuroimage, 21(4), 1275–1288.

    Article  Google Scholar 

  • Mitchell, J. P., Heatherton, T. F., Kelley, W. M., Wyland, C. L., Wegner, D. M., & Macrae, C. N. (2007). Separating sustained from transient aspects of cognitive control during thought suppression. Psychological Science, 18(4), 292–297.

    Article  PubMed  Google Scholar 

  • Najmi, S., & Wegner, D. M. (2008). The gravity of unwanted thoughts: Asymmetric priming effects in thought suppression. Consciousness and Cognition, 17(1), 114–124.

    Article  PubMed  Google Scholar 

  • Nandy, R., & Cordes, D. (2007). A semi-parametric approach to estimate the family-wise error rate in fMRI using resting-state data. Neuroimage, 34(4), 1562–1576.

    Article  PubMed  Google Scholar 

  • Ormel, J., Jeronimus, B. F., Kotov, R., Riese, H., Bos, E. H., Hankin, B., et al. (2013). Neuroticism and common mental disorders: Meaning and utility of a complex relationship. Clinical Psychology Review, 33(5), 686–697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.

    Article  PubMed  Google Scholar 

  • Rizio, A. A., & Dennis, N. A. (2013). The neural correlates of cognitive control: Successful remembering and intentional forgetting. Journal of Cognitive Neuroscience, 25(2), 297.

    Article  PubMed  Google Scholar 

  • Ryckman, N. A., & Lambert, A. J. (2015). Corrigendum to unsuccessful suppression is associated with increased neuroticism, intrusive thoughts, and rumination. Personality & Individual Differences, 73, 88–91.

    Article  Google Scholar 

  • Sacchet, M. D., Levy, B. J., Hamilton, J. P., Maksimovskiy, A., Hertel, P. T., Joormann, J., et al. (2017). Cognitive and neural consequences of memory suppression in major depressive disorder. Cogn Affect Behav Neurosci, 17(1), 77–93.

    Article  PubMed  Google Scholar 

  • Saylik, R. (2017). Neuroticism related differences during porcessing of controlled congnitive tasks.Doctoral dissertation, Brunel University, London.

  • Schultz, C. C., Warziniak, H., Koch, K., Schachtzabel, C., Güllmar, D., Reichenbach, J. R., et al. (2017). Erratum to: High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci, 267(12), 1.

    Google Scholar 

  • Servaas, M. N., Geerligs, L., Renken, R. J., Marsman, J. B. C., Ormel, J., Riese, H., et al. (2015). Connectomics and neuroticism: An altered functional network organization. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 40(2), 296–304.

    Article  PubMed  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. Plos One, 6(9), e25031.

  • Tian, X., Wei, D., Du, X., Wang, K., Yang, J., Liu, W., et al. (2016). Assessment of trait anxiety and prediction of changes in state anxiety using functional brain imaging: A test-retest study. Neuroimage, 133, 408–416.

    Article  PubMed  Google Scholar 

  • Tolin, D. F., Abramowitz, J. S., Hamlin, C., Foa, E. B., & Synodi, D. S. (2002). Attributions for thought suppression failure in Obsessive-Compulsive Disorder. Cognitive Therapy & Research, 26(4), 505–517.

    Article  Google Scholar 

  • Tully, L. M., Lincoln, S. H., Liyanage-Don, N., & Hooker, C. I. (2014). Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia. Schizophrenia Research, 152(2-3), 358–364.

    Article  PubMed  Google Scholar 

  • Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–29.

    Article  PubMed  Google Scholar 

  • Tzschoppe, J., Nees, F., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., et al. (2014). Aversive learning in adolescents: modulation by amygdala-prefrontal and amygdala-hippocampal connectivity and neuroticism. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 39(4), 875.

    Article  PubMed  Google Scholar 

  • Wegner, D. M., Schneider, D. J., Carter, S. R., & White, T. L. (1987). Paradoxical effects of thought suppression. Journal of Personality & Social Psychology, 53(1), 5–13.

    Article  CAS  Google Scholar 

  • Wei, D., Du, X., Li, W., Chen, Q., Li, H., Hao, X., et al. (2015). Regional gray matter volume and anxiety-related traits interact to predict somatic complaints in a non-clinical sample. Soc Cogn Affect Neurosci, 10(1), 122–128.

    Article  PubMed  Google Scholar 

  • Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., & Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. NeuroImage, 47(4), 1408–1416.

    Article  PubMed  Google Scholar 

  • Wells, A., & Davies, M. I. (1994). The thought control questionnaire: A measure of individual differences in the control of unwanted thoughts. Behav Res Ther, 32(8), 871–878.

    Article  CAS  PubMed  Google Scholar 

  • Wenzlaff, R. M., & Wegner, D. M. (2000). Thought suppression. Annual Review of Psychology, 51(51), 59–91.

    Article  CAS  PubMed  Google Scholar 

  • Whitwell, J. L. (2009). Voxel-based morphometry: An automated technique for assessing structural changes in the brain. Journal of Neuroscience, 29(31), 9661–9664.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. D., Moulds, M. L., Grisham, J. R., Gay, P., Lang, T., Kandris, E., et al. (2010). A psychometric evaluation of the Thought Control Ability Questionnaire (TCAQ) and the prediction of cognitive control. Journal of Psychopathology & Behavioral Assessment, 32(3), 397–405.

    Article  Google Scholar 

  • Wittchen, H. U., Zaudig, M., & Fydrich, T. (1997). SKID strukturiertes klinisches interviewfür DSM-IV. Achse I und II. Gttingen: Hogrefe.

    Google Scholar 

  • Wyland, C. L., Kelley, W. M., Neil, C., & M., Gordon, H. L., & Heatherton, T. F. (2003). Neural correlates of thought suppression. Neuropsychologia, 41(14), 1863–1867.

    Article  PubMed  Google Scholar 

  • Xu, J., & Potenza, M. N. (2012). White matter integrity and five-factor personality measures in healthy adults. Neuroimage., 59, 800–807.

    Article  PubMed  Google Scholar 

  • Yang, J., Mccrae, R. R., Costa, P. T., Dai, X., Yao, S., Cai, T., et al. (1999). Cross-cultural personality assessment in psychiatric populations: The NEO-PI—R in the People's Republic of China. Psychological Assessment, 11(3), 359–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31500885; 31600878; 31771231) and the Humanity and Social Science Youth Foundation of Ministry of Education(19YJC190014). We thank everybody who contributed to data collection and analysis. We would like to especially thank Michael C. Anderson for providing us with an effective measurement-Thought Control Ability Questionnaire (TCAQ), as well as valuable comments of data analyses.

Funding

This research was supported by the National Natural Science Foundation of China (31500885; 31600878; 31771231). This work was also supported by the Humanity and Social Science Youth Foundation of Ministry of Education(19YJC190014).

Author information

Authors and Affiliations

Authors

Contributions

FengYing Lu: Statistical analysis, Conceptualization, Funding acquisition, Visualization, Writing.

WenJing Yang: Conceptualization, Funding acquisition, Writing.

DongTao Wei: Formal analysis, Data curation, Funding acquisition.

JiangZhou Sun: Data collection, Image data preprocessing.

QingLin Zhang: Supervision, Validation.

Jiang Qiu: Supervision, Funding acquisition, Validation.

Corresponding author

Correspondence to Jiang Qiu.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of SWU Brain Imaging Center Institutional Review Board.

Informed consent

Informed consent was obtained from all participants in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Yang, W., Wei, D. et al. Superior frontal gyrus and middle temporal gyrus connectivity mediates the relationship between neuroticism and thought suppression. Brain Imaging and Behavior 16, 1400–1409 (2022). https://doi.org/10.1007/s11682-021-00599-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00599-1

Key words

Navigation