Skip to main content

To explore the mechanism of tobacco addiction using structural and functional MRI: a preliminary study of the role of the cerebellum-striatum circuit

Abstract

Previous studies have found that the striatum and the cerebellum played important roles in nicotine dependence, respectively. In heavy smokers, however, the effect of resting-state functional connectivity of cerebellum-striatum circuits in nicotine dependence remained unknown. This study aimed to explore the role of the circuit between the striatum and the cerebellum in addiction in heavy smokers using structural and functional magnetic resonance imaging. The grey matter volume differences and the resting-state functional connectivity differences in cerebellum-striatum circuits were investigated between 23 heavy smokers and 23 healthy controls. The cigarette dependence in heavy smokers and healthy controls were evaluated by using Fagerström Test. Then, we applied mediation analysis to test whether the resting-state functional connectivity between the striatum and the cerebellum mediates the relationship between the striatum morphometry and the nicotine dependence in heavy smokers. Compared with healthy controls, the heavy smokers’ grey matter volumes decreased significantly in the cerebrum (bilateral), and increased significantly in the caudate (bilateral). Seed-based resting-state functional connectivity analysis showed significantly higher resting-state functional connectivity among the bilateral caudate, the left cerebellum, and the right middle temporal gyrus in heavy smokers. The cerebellum-striatum resting-state functional connectivity fully mediated the relationship between the striatum morphometry and the nicotine dependence in heavy smokers. Heavy smokers showed abnormal interactions and functional connectivity between the striatum and the cerebellum, which were associated with the striatum morphometry and nicotine dependence. Such findings could provide new insights into the neural correlates of nicotine dependence in heavy smokers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

The data for this study are not publicly available because Zhongnan Hospital of Wuhan University, the centre from which the data were collected, does not agree to make the data publicly accessible. Further inquiry about data sharing maybe directed to Prof. Bingsheng Huang, huangb@szu.edu.cn.

Code availability

Not applicable.

References

  1. Barrett, S. P., Boileau, I., Okker, J., Pihl, R. O., & Dagher, A. (2004). The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse (New York, N.Y.), 54(2), 65–71. https://doi.org/10.1002/syn.20066

    Article  PubMed  CAS  Google Scholar 

  2. Brody, A. L., Mandelkern, M. A., Jarvik, M. E., Lee, G. S., Smith, E. C., Huang, J. C., Bota, R. G., Bartzokis, G., & London, E. D. (2004). Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biological Psychiatry, 55(1), 77–84. https://doi.org/10.1016/s0006-3223(03)00610-3

    Article  PubMed  Google Scholar 

  3. Courtney, R. (2015). The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General, 2014. Drug and Alcohol Review, 34(6), 694–695. https://doi.org/10.1111/dar.12309

    Article  Google Scholar 

  4. Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214

    Article  PubMed  CAS  Google Scholar 

  5. Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739. https://doi.org/10.1016/s0959-4388(00)00153-7

    Article  PubMed  CAS  Google Scholar 

  6. Froeliger, B., McConnell, P. A., Stankeviciute, N., McClure, E. A., Kalivas, P. W., & Gray, K. M. (2015). The effects of N-Acetylcysteine on frontostriatal resting-state functional connectivity, withdrawal symptoms and smoking abstinence: A double-blind, placebo-controlled fMRI pilot study. Drug and Alcohol Dependence, 156, 234–242. https://doi.org/10.1016/j.drugalcdep.2015.09.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gallezot, J. D., Kloczynski, T., Weinzimmer, D., Labaree, D., Zheng, M. Q., Lim, K., Rabiner, E. A., Ridler, K., Pittman, B., Huang, Y., Carson, R. E., Morris, E. D., & Cosgrove, K. P. (2014). Imaging nicotine- and amphetamine-induced dopamine release in rhesus monkeys with [(11)C]PHNO vs [(11)C]raclopride PET. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39(4), 866–874. https://doi.org/10.1038/npp.2013.286

    Article  CAS  Google Scholar 

  8. Gallinat, J., Meisenzahl, E., Jacobsen, L. K., Kalus, P., Bierbrauer, J., Kienast, T., Witthaus, H., Leopold, K., Seifert, F., Schubert, F., & Staedtgen, M. (2006). Smoking and structural brain deficits: A volumetric MR investigation. The European Journal of Neuroscience, 24(6), 1744–1750. https://doi.org/10.1111/j.1460-9568.2006.05050.x

    Article  PubMed  Google Scholar 

  9. Godtfredsen, N. S., Holst, C., Prescott, E., Vestbo, J., & Osler, M. (2002). Smoking reduction, smoking cessation, and mortality: A 16-year follow-up of 19,732 men and women from The Copenhagen Centre for Prospective Population Studies. American Journal of Epidemiology, 156(11), 994–1001. https://doi.org/10.1093/aje/kwf150

    Article  PubMed  Google Scholar 

  10. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86(9), 1119–1127. https://doi.org/10.1111/j.1360-0443.1991.tb01879.x

    Article  PubMed  CAS  Google Scholar 

  11. Herman, A. I., DeVito, E. E., Jensen, K. P., & Sofuoglu, M. (2014). Pharmacogenetics of nicotine addiction: Role of dopamine. Pharmacogenomics, 15(2), 221–234. https://doi.org/10.2217/pgs.13.246

    Article  PubMed  CAS  Google Scholar 

  12. Hoshi, E., Tremblay, L., Feger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493. https://doi.org/10.1038/nn1544

    Article  PubMed  CAS  Google Scholar 

  13. Hu, S. S., Neff, L., Agaku, I. T., Cox, S., Day, H. R., Holder-Hayes, E., & King, B. A. (2016). Tobacco Product Use Among Adults - United States, 2013–2014. (MMWR) Morbidity and Mortality Weekly Report, 65(27), 685–691. https://doi.org/10.15585/mmwr.mm6527a1

    Article  PubMed  Google Scholar 

  14. Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J., & Yalachkov, Y. (2014). Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neuroscience and Biobehavioral Reviews, 38, 1–16. https://doi.org/10.1016/j.neubiorev.2013.10.013

    Article  PubMed  Google Scholar 

  15. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. N. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A, 107(33), 14811–14816. https://doi.org/10.1073/pnas.1007779107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 217–238. https://doi.org/10.1038/npp.2009.110

    Article  Google Scholar 

  17. Kühn, S., Romanowski, A., Schilling, C., Mobascher, A., Warbrick, T., Winterer, G., & Gallinat, J. (2012). Brain grey matter deficits in smokers: Focus on the cerebellum. Brain Structure & Function, 217(2), 517–522. https://doi.org/10.1007/s00429-011-0346-5

    Article  CAS  Google Scholar 

  18. Li, Y., Yuan, K., Cai, C., Feng, D., Yin, J., Bi, Y., Shi, S., Yu, D., Jin, C., von Deneen, K. M., Qin, W., & Tian, J. (2015). Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug and Alcohol Dependence, 151, 211–219. https://doi.org/10.1016/j.drugalcdep.2015.03.023

    Article  PubMed  Google Scholar 

  19. Mansvelder, H. D., Mertz, M., & Role, L. W. (2009). Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Seminars in Cell & Developmental Biology, 20(4), 432–440. https://doi.org/10.1016/j.semcdb.2009.01.007

    Article  CAS  Google Scholar 

  20. Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging, 1(2), 105–113. https://doi.org/10.2174/1573405054038726

    Article  Google Scholar 

  21. Miquel, M., Vazquez-Sanroman, D., Carbo-Gas, M., Gil-Miravet, I., Sanchis-Segura, C., Carulli, D., Manzo, J., & Coria-Avila, G. A. (2016). Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neuroscience and Biobehavioral Reviews, 60, 1–11. https://doi.org/10.1016/j.neubiorev.2015.11.005

    Article  PubMed  Google Scholar 

  22. Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z., & Borsook, D. (2014). The cerebellum and addiction: Insights gained from neuroimaging research. Addiction Biology, 19(3), 317–331. https://doi.org/10.1111/adb.12101

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shen, Z., Huang, P., Wang, C., Qian, W., Yang, Y., & Zhang, M. (2018). Cerebellar Gray Matter Reductions Associate With Decreased Functional Connectivity in Nicotine-Dependent Individuals. Nicotine & Tobacco Research, 20(4), 440–447. https://doi.org/10.1093/ntr/ntx168

    Article  CAS  Google Scholar 

  24. Shi, Y. Y., Zhang, Y., Cheng, J. L., Zhu, C. D., Xu, K., & Wang, W. J. (2019). Study on the mechanism of brain damage based on structural covariant network to evaluate the brain structure of nicotine addicts. Zhonghua Yi Xue Za Zhi, 99(9), 669–674. https://doi.org/10.3760/cma.j.issn.0376-2491.2019.09.007

    Article  PubMed  CAS  Google Scholar 

  25. Sutherland, M. T., Riedel, M. C., Flannery, J. S., Yanes, J. A., Fox, P. T., Stein, E. A., & Laird, A. R. (2016). Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behavioral and Brain Functions: BBF, 12(1), 16. https://doi.org/10.1186/s12993-016-0100-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Swain, R. A., Kerr, A. L., & Thompson, R. F. (2011). The cerebellum: A neural system for the study of reinforcement learning. Frontiers in Behavioral Neuroscience, 5, 8. https://doi.org/10.3389/fnbeh.2011.00008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thoma, P., Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). The cerebellum is involved in reward-based reversal learning. Cerebellum (london, England), 7(3), 433–443. https://doi.org/10.1007/s12311-008-0046-8

    Article  Google Scholar 

  28. Tsukada, H., Miyasato, K., Harada, N., Nishiyama, S., Fukumoto, D., & Kakiuchi, T. (2005). Nicotine modulates dopamine synthesis rate as determined by L-[beta-11C]DOPA: PET studies compared with [11C]raclopride binding in the conscious monkey brain. Synapse (New York, N.Y.), 57(2), 120–122. https://doi.org/10.1002/syn.20157

    Article  CAS  Google Scholar 

  29. Van Schayck, O. C. P., Williams, S., Barchilon, V., Baxter, N., Jawad, M., Katsaounou, P. A., Kirenga, B. J., Panaitescu, C., Tsiligianni, I. G., Zwar, N., Ostrem, A. (2017). Treating tobacco dependence: guidance for primary care on life-saving interventions. Position statement of the IPCRG.npj. Primary Care Respiratory Medicine, 27,(1). https://doi.org/10.1038/s41533-017-0039-5

  30. Wetherill, R. R., Fang, Z., Jagannathan, K., Childress, A. R., Rao, H., & Franklin, T. R. (2015). Cannabis, cigarettes, and their co-occurring use: Disentangling differences in default mode network functional connectivity. Drug and Alcohol Dependence, 153, 116–123. https://doi.org/10.1016/j.drugalcdep.2015.05.046

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weywadt, C. R., Kiehl, K. A., & Claus, E. D. (2017). Neural correlates of response inhibition in current and former smokers. Behavioural Brain Research, 319, 207–218. https://doi.org/10.1016/j.bbr.2016.11.030

    Article  PubMed  Google Scholar 

  32. Wilson, S. J., Creswell, K. G., Sayette, M. A., & Fiez, J. A. (2013). Ambivalence about smoking and cue-elicited neural activity in quitting-motivated smokers faced with an opportunity to smoke. Addictive Behaviors, 38(2), 1541–1549. https://doi.org/10.1016/j.addbeh.2012.03.020

    Article  PubMed  Google Scholar 

  33. Wooltorton, J. R. A., Pidoplichko, V. I., Broide, R. S., & Dani, J. A. (2003). Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. Journal of Neuroscience, 23(8), 3176–3185.

    Article  CAS  Google Scholar 

  34. Wu, G., Yang, S., Zhu, L., & Lin, F. (2015). Altered spontaneous brain activity in heavy smokers revealed by regional homogeneity. Psychopharmacology (berl), 232(14), 2481–2489. https://doi.org/10.1007/s00213-015-3881-6

    Article  CAS  Google Scholar 

  35. Yan, C.-G., Craddock, R. C., He, Y., & Milham, M. (2013). Addressing head motion dependencies for small-world topologies in functional connectomics. Frontiers in Human Neuroscience, 7, 910.

    Article  Google Scholar 

  36. Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14(3), 339–351. https://doi.org/10.1007/s12021-016-9299-4

    Article  PubMed  Google Scholar 

  37. Yuan, K., Yu, D., Bi, Y., Li, Y., Guan, Y., Liu, J., Zhang, Y., Qin, W., Lu, X., & Tian, J. (2016). The implication of frontostriatal circuits in young smokers: A resting-state study. Human Brain Mapping, 37(6), 2013–2026. https://doi.org/10.1002/hbm.23153

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Zhongnan Hospital of Wuhan University, participants who took part in the study and data collection.

Funding

This study was supported by the National Natural Science Foundation of China (No. 2016YFC1304702), National Natural Science Foundation of China (No. 61973220), Shenzhen University Presidential Fund (No. 85706–0000040544), Shenzhen Science and Technology Project (No. JCYJ20190808175413552), Guangdong Basic and Applied Basic Research Foundation (No.2020A1515010571), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (No.2019SHIBS0003), Guangdong Key Basic Research Grant (No.2018B030332001), and Guangdong Pearl River Talents Plan (No.2016ZT06S220).

Author information

Affiliations

Authors

Contributions

Author contributions included conception and study design (Z.C., P.W., G.W., J.Z. and B.H), data collection oracquisition(Z.C., P.W., G.W., J.Z. and B.H.), statistical analysis (Z.C., S.W., J.T., J.Z., G.W. and B.S), interpretation of results (Z.C., P.W., J.Z., G.W. and B.S), drafting the manuscript work or revising it critically for important intellectual content(Z.C., P.W., J.Z., G.W. and B.S) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work(All authors).

Corresponding authors

Correspondence to Guangyao Wu, Jian Zhang or Bingsheng Huang.

Ethics declarations

Ethics approval

Informed consent approved by the Medical Ethics Committee of Zhongnan Hospital of Wuhan University was obtained from all participants.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of Interest

The authors report no conflict of interest.

Additional information

Publisher's nte

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zongyou Cai and Panying Wang are equal contributors, and co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Wang, P., Liu, B. et al. To explore the mechanism of tobacco addiction using structural and functional MRI: a preliminary study of the role of the cerebellum-striatum circuit. Brain Imaging and Behavior (2021). https://doi.org/10.1007/s11682-021-00546-0

Download citation

Keywords

  • Nicotine dependence
  • Resting-state functional magnetic resonance imaging
  • Structural magnetic resonance imaging
  • Cerebellum-striatum circuit
  • Mediation analysis