Skip to main content

Long-term television viewing patterns and gray matter brain volume in midlife

Abstract

The purpose of this study was to investigate whether long-term television viewing patterns, a common sedentary behavior, in early to mid-adulthood is associated with gray matter brain volume in midlife and if this is independent of physical activity. We evaluated 599 participants (51% female, 44% black, mean age 30.3 ± 3.5 at baseline and 50.2 ± 3.5 years at follow-up and MRI) from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) study. We assessed television patterns with repeated interviewer-administered questionnaire spanning 20 years. Structural MRI (3T) measures of frontal cortex, entorhinal cortex, hippocampal, and total gray matter volumes were assessed at midlife. Over the 20 years, participants reported viewing an average of 2.5 ± 1.7 h of television per day (range: 0–10 h). After multivariable adjustment, greater television viewing was negatively associated with gray matter volume in the frontal (β = − 0.77; p = 0.01) and entorhinal cortex (β = − 23.83; p = 0.05) as well as total gray matter (β = − 2.09; p = 0.003) but not hippocampus. These results remained unchanged after additional adjustment for physical activity. For each one standard deviation increase in television viewing, the difference in gray matter volume z-score was approximately 0.06 less for each of the three regions (p < 0.05). Among middle-aged adults, greater television viewing in early to mid-adulthood was associated with lower gray matter volume. Sedentariness or other facets of television viewing may be important for brain aging even in middle age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data

Anonymized data are available from the CARDIA Coordinating Center (cardia.dopm.uab.edu/contact-cardia). A description of the National Heart, Lung, and Blood Institute policies governing the data and describing access to the data can be found online (cardia.dopm.uab.edu/study-information/nhlbi-data-repository-data).

References

  1. Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., & Leon, A. S. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(9 Suppl), S498-504. https://doi.org/10.1097/00005768-200009001-00009

    CAS  Article  PubMed  Google Scholar 

  2. Allison, S. L., Koscik, R. L., Cary, R. P., Jonaitis, E. M., Rowley, H. A., Chin, N. A., & Johnson, S. C. (2019). Comparison of different MRI-based morphometric estimates for defining neurodegeneration across the Alzheimer’s disease continuum. Neuroimage Clinical, 23, 101895. https://doi.org/10.1016/j.nicl.2019.101895

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnardottir, N. Y., Koster, A., Domelen, D. R. V., Brychta, R. J., Caserotti, P., Eiriksdottir, G., & Sveinsson, T. (2016). Association of change in brain structure to objectively measured physical activity and sedentary behavior in older adults: Age, Gene/Environment Susceptibility-Reykjavik Study. Behavioural Brain Research, 296, 118–124. https://doi.org/10.1016/j.bbr.2015.09.005

    Article  PubMed  Google Scholar 

  4. Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurology, 10(9), 819–828. https://doi.org/10.1016/S1474-4422(11)70072-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnes, J. N. (2015). Exercise, cognitive function, and aging. Advances in Physiology Education, 39(2), 55–62. https://doi.org/10.1152/advan.00101.2014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641. https://doi.org/10.1016/s0896-6273(02)00830-9

    CAS  Article  PubMed  Google Scholar 

  7. Clark, B. K., Sugiyama, T., Healy, G. N., Salmon, J., Dunstan, D. W., & Owen, N. (2009). Validity and reliability of measures of television viewing time and other non-occupational sedentary behaviour of adults: A review. Obesity Reviews, 10(1), 7–16. https://doi.org/10.1111/j.1467-789X.2008.00508.x

    Article  PubMed  Google Scholar 

  8. Doshi, J., Erus, G., Ou, Y., Gaonkar, B., & Davatzikos, C. (2013). Multi-atlas skull-stripping. Academic Radiology, 20(12), 1566–1576. https://doi.org/10.1016/j.acra.2013.09.010

    Article  PubMed  Google Scholar 

  9. Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C., & Gur, R. E. (2016). MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. NeuroImage, 127, 186–195. https://doi.org/10.1016/j.neuroimage.2015.11.073

    Article  PubMed  Google Scholar 

  10. Dougherty, R. J., Ellingson, L. D., Schultz, S. A., Boots, E. A., Meyer, J. D., Lindheimer, J. B., & Cook, D. B. (2016). Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer’s disease. Alzheimers Dement (amst), 4, 14–17. https://doi.org/10.1016/j.dadm.2016.03.005

    Article  Google Scholar 

  11. Dougherty, R. J., Jonaitis, E. M., Gaitán, J. M., Lose, S. R., Mergen, B. M., Johnson, S. C., & Cook, D. B. (2021). Cardiorespiratory fitness mitigates brain atrophy and cognitive decline in adults at risk for Alzheimer’s disease. Alzheimers Dement (amst), 13(1), e12212. https://doi.org/10.1002/dad2.12212

    Article  Google Scholar 

  12. Dougherty, R. J., Schultz, S. A., Boots, E. A., Ellingson, L. D., Meyer, J. D., Van Riper, S., & Cook, D. B. (2017). Relationships between cardiorespiratory fitness, hippocampal volume, and episodic memory in a population at risk for Alzheimer’s disease. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(3), e00625. https://doi.org/10.1002/brb3.625

    Article  Google Scholar 

  13. Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M., & Resnick, S. M. (2009). Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72(22), 1906–1913. https://doi.org/10.1212/WNL.0b013e3181a82634

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dunstan, D. W., Howard, B., Healy, G. N., & Owen, N. (2012). Too much sitting–a health hazard. Diabetes Research and Clinical Practice, 97(3), 368–376. https://doi.org/10.1016/j.diabres.2012.05.020

    Article  PubMed  Google Scholar 

  15. Ekelund, U., Steene-Johannessen, J., Brown, W. J., Fagerland, M. W., Owen, N., & Powell, K. E. (2016). Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet, 388(10051), 1302–1310. https://doi.org/10.1016/S0140-6736(16)30370-1

    Article  PubMed  Google Scholar 

  16. Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35(Suppl 2), S20-28. https://doi.org/10.1016/j.neurobiolaging.2014.03.034

    Article  PubMed  Google Scholar 

  17. Falck, R. S., Davis, J. C., & Liu-Ambrose, T. (2017). What is the association between sedentary behaviour and cognitive function? A systematic review. British Journal of Sports Medicine, 51(10), 800–811. https://doi.org/10.1136/bjsports-2015-095551

    Article  PubMed  Google Scholar 

  18. Fancourt, D., & Steptoe, A. (2019). Television viewing and cognitive decline in older age: Findings from the English Longitudinal Study of Ageing. Science and Reports, 9(1), 2851. https://doi.org/10.1038/s41598-019-39354-4

    CAS  Article  Google Scholar 

  19. Flayelle, M., Canale, N., Vögele, C., Karila, L., Maurage, P., & Billieux, J. (2019). Assessing binge-watching behaviors: Development and validation of the “Watching TV Series Motives” and “Binge-Watching Engagement and Symptoms” questionnaires. Computers in Human Behavior, 90, 26–36.

    Article  Google Scholar 

  20. Friedman, G. D., Cutter, G. R., Donahue, R. P., Hughes, G. H., Hulley, S. B., Jacobs, D. R., & Savage, P. J. (1988). CARDIA: Study design, recruitment, and some characteristics of the examined subjects. Journal of Clinical Epidemiology, 41(11), 1105–1116. https://doi.org/10.1016/0895-4356(88)90080-7

    CAS  Article  PubMed  Google Scholar 

  21. Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30(2), 319–333. https://doi.org/10.1016/s0896-6273(01)00285-9

    CAS  Article  PubMed  Google Scholar 

  22. Goldszal, A. F., Davatzikos, C., Pham, D. L., Yan, M. X., Bryan, R. N., & Resnick, S. M. (1998). An image-processing system for qualitative and quantitative volumetric analysis of brain images. Journal of Computer Assisted Tomography, 22(5), 827–837. https://doi.org/10.1097/00004728-199809000-00030

    CAS  Article  PubMed  Google Scholar 

  23. Hamer, M., & Chida, Y. (2009). Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychological Medicine, 39(1), 3–11. https://doi.org/10.1017/S0033291708003681

    CAS  Article  PubMed  Google Scholar 

  24. Hoang, T. D., Reis, J., Zhu, N., Jacobs, D. R., Launer, L. J., Whitmer, R. A., & Yaffe, K. (2016). Effect of early adult patterns of physical activity and television viewing on midlife cognitive function. JAMA Psychiatry, 73(1), 73–79. https://doi.org/10.1001/jamapsychiatry.2015.2468

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hughes, G. H., Cutter, G., Donahue, R., Friedman, G. D., Hulley, S., Hunkeler, E., & Pirie, P. (1987). Recruitment in the coronary artery disease risk development in young adults (cardia) study. Controlled Clinical Trials, 8(4 Suppl), 68S-73S. https://doi.org/10.1016/0197-2456(87)90008-0

    CAS  Article  PubMed  Google Scholar 

  26. Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Pérez, J. M., & Evans, A. C. (2016). Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nature Communications, 7, 11934. https://doi.org/10.1038/ncomms11934

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., & Haeberlein, S. B. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018

    Article  Google Scholar 

  28. Jacobs, D. R., Hahn, L. P., Haskell, W. L., Pirie, P., & Sidney, S. (1989). Validity and reliability of short physical activity history: cardia and the minnesota heart health program. Journal of Cardiopulmonary Rehabilitation, 9(11), 448–459. https://doi.org/10.1097/00008483-198911000-00003

    Article  PubMed  PubMed Central  Google Scholar 

  29. Katzmarzyk, P. T., Church, T. S., Craig, C. L., & Bouchard, C. (2009). Sitting time and mortality from all causes, cardiovascular disease, and cancer. Medicine and Science in Sports and Exercise, 41(5), 998–1005. https://doi.org/10.1249/MSS.0b013e3181930355

    Article  PubMed  Google Scholar 

  30. Launer, L. J., Lewis, C. E., Schreiner, P. J., Sidney, S., Battapady, H., Jacobs, D. R., & Bryan, R. N. (2015). Vascular factors and multiple measures of early brain health: CARDIA brain MRI study. PLoS ONE, 10(3), e0122138. https://doi.org/10.1371/journal.pone.0122138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Lindstrom, H. A., Fritsch, T., Petot, G., Smyth, K. A., Chen, C. H., Debanne, S. M., & Friedland, R. P. (2005). The relationships between television viewing in midlife and the development of Alzheimer’s disease in a case-control study. Brain and Cognition, 58(2), 157–165. https://doi.org/10.1016/j.bandc.2004.09.020

    Article  PubMed  Google Scholar 

  32. Nualnim, N., Barnes, J. N., Tarumi, T., Renzi, C. P., & Tanaka, H. (2011). Comparison of central artery elasticity in swimmers, runners, and the sedentary. American Journal of Cardiology, 107(5), 783–787. https://doi.org/10.1016/j.amjcard.2010.10.062

    Article  Google Scholar 

  33. Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.

    Article  Google Scholar 

  34. Raichlen, D. A., Klimentidis, Y. C., Bharadwaj, P. K., & Alexander, G. E. (2019). Differential associations of engagement in physical activity and estimated cardiorespiratory fitness with brain volume in middle-aged to older adults. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-019-00148-x

    Article  Google Scholar 

  35. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689. https://doi.org/10.1093/cercor/bhi044

    Article  PubMed  Google Scholar 

  36. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23(8), 3295–3301.

    CAS  Article  Google Scholar 

  37. Schultz, S. A., Larson, J., Oh, J., Koscik, R., Dowling, M. N., Gallagher, C. L., & Okonkwo, O. C. (2015). Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer’s disease. Brain Imaging and Behavior, 9(4), 729–736. https://doi.org/10.1007/s11682-014-9329-5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seals, D. R., Desouza, C. A., Donato, A. J., & Tanaka, H. (2008). Habitual exercise and arterial aging. Journal of Applied Physiology, 105(4), 1323–1332. https://doi.org/10.1152/japplphysiol.90553.2008

    Article  PubMed  PubMed Central  Google Scholar 

  39. Seals, D. R., Hagberg, J. M., Hurley, B. F., Ehsani, A. A., & Holloszy, J. O. (1984). Endurance training in older men and women: I: Cardiovascular responses to exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 57(4), 1024–1029. https://doi.org/10.1152/jappl.1984.57.4.1024

    CAS  Article  Google Scholar 

  40. Shen, D., & Davatzikos, C. (2002). HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11), 1421–1439. https://doi.org/10.1109/TMI.2002.803111

    Article  PubMed  Google Scholar 

  41. Siddarth, P., Burggren, A. C., Eyre, H. A., Small, G. W., & Merrill, D. A. (2018). Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS ONE, 13(4), e0195549. https://doi.org/10.1371/journal.pone.0195549

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Sidney, S., Jacobs, D. R., Haskell, W. L., Armstrong, M. A., Dimicco, A., Oberman, A., & Van Horn, L. (1991). Comparison of two methods of assessing physical activity in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Epidemiology, 133(12), 1231–1245. https://doi.org/10.1093/oxfordjournals.aje.a115835

    CAS  Article  PubMed  Google Scholar 

  43. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908

    Article  PubMed  PubMed Central  Google Scholar 

  44. Verghese, J., LeValley, A., Derby, C., Kuslansky, G., Katz, M., Hall, C., & Lipton, R. B. (2006). Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology, 66(6), 821–827. https://doi.org/10.1212/01.wnl.0000202520.68987.48

    CAS  Article  PubMed  Google Scholar 

  45. Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., & Buschke, H. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348(25), 2508–2516. https://doi.org/10.1056/NEJMoa022252

    Article  Google Scholar 

  46. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., & Salvado, O. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurology, 12(4), 357–367. https://doi.org/10.1016/S1474-4422(13)70044-9

    CAS  Article  PubMed  Google Scholar 

  47. Voss, M. W., Carr, L. J., Clark, R., & Weng, T. (2014). Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Mental Health and Physical Activity, 7(1), 9–24.

    Article  Google Scholar 

  48. Wheeler, M. J., Dempsey, P. C., Grace, M. S., Ellis, K. A., Gardiner, P. A., Green, D. J., & Dunstan, D. W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement (n Y), 3(3), 291–300. https://doi.org/10.1016/j.trci.2017.04.001

    Article  Google Scholar 

  49. Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161(14), 1703–1708. https://doi.org/10.1001/archinte.161.14.1703

    CAS  Article  PubMed  Google Scholar 

  50. Yang, L., Cao, C., Kantor, E. D., Nguyen, L. H., Zheng, X., Park, Y., & Cao, Y. (2019). Trends in sedentary behavior among the US population, 2001–2016. JAMA, 321(16), 1587–1597. https://doi.org/10.1001/jama.2019.3636

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zacharaki, E. I., Kanterakis, S., Bryan, R. N., & Davatzikos, C. (2008). Measuring brain lesion progression with a supervised tissue classification system. Med Image Comput Comput Assist Interv, 11(Pt 1), 620–627. https://doi.org/10.1007/978-3-540-85988-8_74

    Article  PubMed  Google Scholar 

  52. Zlatar, Z. Z., Hays, C. C., Mestre, Z., Campbell, L. M., Meloy, M. J., Bangen, K. J., & Wierenga, C. E. (2019). Dose-dependent association of accelerometer-measured physical activity and sedentary time with brain perfusion in aging. Experimental Gerontology, 125, 110679. https://doi.org/10.1016/j.exger.2019.110679

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the CARDIA staff for their assistance in recruitment and data collection. Above all, the authors thank their dedicated volunteers for their participation in this research.

Funding

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by Contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). CARDIA was also partially supported by the Intramural Research Program of the National Institute on Aging (NIA) and an intra-agency agreement between NIA and NHLBI (AG0005). Ryan J Dougherty was supported by an NIA training Grant (T32AG027668). Kristine Yaffe was supported in part by NIA Grants K24AG031155 and R01AG063887.

Author information

Affiliations

Authors

Contributions

Drafting/revising the manuscript for content: RJD, TDH, LJL, DRJ, SS, KY. Study concept or design: RJD, TDH, KY. Analysis or interpretation of data: RJD, TDH, LJL, DRJ, SS, KY.

Corresponding author

Correspondence to Ryan J. Dougherty.

Ethics declarations

Conflict of interest

Ryan J. Dougherty, Tina D. Hoang, Lenore J. Launer, David R. Jacobs, Jr, and Stephen Sidney declare no conflicts of interest. Kristine Yaffe serves on DSMBs for Eli Lilly and several National Institute on Aging–sponsored studies and is also a member of the Beeson Scientific Advisory Board and the Global Council on Brain Health.

Ethical approval

The CARDIA study and brain MRI ancillary study were approved by the Institutional Review Board (IRB) of each of the participating sites as well as the University of Pennsylvania and University of California, San Francisco. All procedures followed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. At each examination participants were provided and signed a separate written informed consent for the CARDIA study and the brain MRI ancillary study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dougherty, R.J., Hoang, T.D., Launer, L.J. et al. Long-term television viewing patterns and gray matter brain volume in midlife. Brain Imaging and Behavior (2021). https://doi.org/10.1007/s11682-021-00534-4

Download citation

Keywords

  • Lifestyle factors
  • Sitting time
  • Volumetric MRI
  • Epidemiology
  • Cohort studies