Skip to main content

Advertisement

Log in

Abnormal connectivity of anterior-insular subdivisions and relationship with somatic symptom in depressive patients

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Depressive patients frequently present with somatic complaints such as pain and fatigue. The anterior insula (AI) is a crucial region for somatic processing, but reported contributions of AI dysfunction to somatic symptoms have varied across studies. We speculated that functional heterogeneity among AI subdivisions may contribute to this inconsistency. To reveal the correlation between each subdivision and somatic symptoms, we investigated resting-state functional connectivity (RSFC) based on seeds within distinct AI subdivisions in 45 depressive patients and 35 matched healthy controls (HCs). Depressive and somatic symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and the 15-item somatic symptom severity scale of the Patient Health Questionnaire (PHQ-15), respectively. The contributions of AI subregion-specific pathways to depression were further validated by examining changes in symptom severity and RSFC following electroconvulsive therapy (ECT). At baseline, depressive patients exhibited weaker RSFC between ventral AI (vAI) and right orbitofrontal cortex (rOFC) than HCs. Moreover, vAI–rOFC RSFC strength was negatively correlated with PHQ-15 and HDRS scores, indicating that weaker RSFC predicted greater symptom severity. ECT reduced depressive and somatic symptoms, and symptom mitigation was correlated with enhanced vAI–rOFC RSFC. The findings suggest that reduced vAI–rOFC RSFC underlies the somatic symptoms of depression and that enhancing vAI–rOFC RSFC can contribute to amelioration of somatic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai, T., Xie, W., Wei, Q., Chen, Y., Mu, J., Tian, Y., & Wang, K. (2017). Electroconvulsive therapy regulates emotional memory bias of depressed patients. Psychiatry Research, 257, 296–302.

    PubMed  Google Scholar 

  • Bai, T., Wei, Q., Zu, M., Xie, W., Wang, J., Gong-Jun, J., et al. (2019). Functional plasticity of the dorsomedial prefrontal cortex in depression reorganized by electroconvulsive therapy: Validation in two independent samples. Human Brain Mapping, 40, 465–473.

    PubMed  Google Scholar 

  • Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: a literature review. Archives of Internal Medicine, 163, 2433–2445.

    PubMed  Google Scholar 

  • Barbas, H., Saha, S., Rempel-Clower, N., & Ghashghaei, T. (2003). Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neuroscience, 4, 25.

    PubMed  PubMed Central  Google Scholar 

  • Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550–558.

    PubMed  Google Scholar 

  • Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suarez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10, 220–242.

    CAS  PubMed  Google Scholar 

  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Frontiers in Systems Neuroscience, 4, 13.

    PubMed  PubMed Central  Google Scholar 

  • Charlson, F., Siskind, D., Doi, S. A., McCallum, E., Broome, A., & Lie, D. C. (2012). ECT efficacy and treatment course: a systematic review and meta-analysis of twice vs thrice weekly schedules. Journal of Affective Disorders, 138, 1–8.

    PubMed  Google Scholar 

  • Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature reviews. Neuroscience, 3, 655–666.

    CAS  PubMed  Google Scholar 

  • Critchley, H. D. (2004). The human cortex responds to an interoceptive challenge. Proceedings of the National Academy of Sciences of the United States of America, 101, 6333–6334.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195.

    CAS  PubMed  Google Scholar 

  • Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage, 24, 751–762.

    PubMed  Google Scholar 

  • Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex, 21, 1498–1506.

    PubMed  Google Scholar 

  • Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48, 813–829.

    CAS  PubMed  Google Scholar 

  • Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure & Function, 213, 93–118.

    Google Scholar 

  • Fazeli, S., & Buchel, C. (2018). Pain-related expectation and prediction error signals in the anterior insula are not related to aversiveness. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 38, 6461–6474.

    CAS  Google Scholar 

  • Feffer, K., Fettes, P., Giacobbe, P., Daskalakis, Z. J., Blumberger, D. M., & Downar, J. (2018). 1 Hz rTMS of the right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes. European Neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology, 28, 109–117.

    CAS  Google Scholar 

  • Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., & Bandler, R. (2000). Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. The Journal of Comparative Neurology, 422, 556–578.

    CAS  PubMed  Google Scholar 

  • Fox, K. C. R., Yih, J., Raccah, O., Pendekanti, S. L., Limbach, L. E., Maydan, D. D., & Parvizi, J. (2018). Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology, 91, e1519–e1527.

    PubMed  PubMed Central  Google Scholar 

  • Frey, S., & Petrides, M. (2002). Orbitofrontal cortex and memory formation. Neuron, 36, 171–176.

    CAS  PubMed  Google Scholar 

  • Gusnard, D. A., Ollinger, J. M., Shulman, G. L., Cloninger, C. R., Price, J. L., Van Essen, D. C., & Raichle, M. E. (2003). Persistence and brain circuitry. Proceedings of the National Academy of Sciences of the United States of America, 100, 3479–3484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141, 311–363.

    PubMed  Google Scholar 

  • Husain, M. M., Rush, A. J., Fink, M., Knapp, R., Petrides, G., Rummans, T., et al. (2004). Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. The Journal of Clinical Psychiatry, 65, 485–491.

    PubMed  Google Scholar 

  • Kellner, C. H., Greenberg, R. M., Murrough, J. W., Bryson, E. O., Briggs, M. C., & Pasculli, R. M. (2012). ECT in treatment-resistant depression. The American Journal of Psychiatry, 169, 1238–1244.

    PubMed  Google Scholar 

  • Kirlic, N., Aupperle, R. L., Misaki, M., Kuplicki, R., & Alvarez, R. P. (2017). Recruitment of orbitofrontal cortex during unpredictable threat among adults at risk for affective disorders. Brain and Behavior, 7, e00757.

  • Kirmayer, L. J., & Robbins, J. M. (1991). Three forms of somatization in primary care: prevalence, co-occurrence, and sociodemographic characteristics. The Journal of Nervous and Mental Disease, 179, 647–655.

    CAS  PubMed  Google Scholar 

  • Koenen, L. R., Icenhour, A., Forkmann, K., Pasler, A., Theysohn, N., Forsting, M., Bingel, U., & Elsenbruch, S. (2017). Greater fear of visceral pain contributes to differences between visceral and somatic pain in healthy women. Pain, 158, 1599–1608.

    PubMed  Google Scholar 

  • Koyama, T., McHaffie, J. G., Laurienti, P. J., & Coghill, R. C. (2005). The subjective experience of pain: where expectations become reality. Proceedings of the National Academy of Sciences of the United States of America, 102, 12950–12955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan, V., Sood, M., & Chadda, R. K. (2013). Caregiver burden and disability in somatization disorder. Journal of Psychosomatic Research, 75, 376–380.

    PubMed  Google Scholar 

  • Kroenke, K., Spitzer, R. L., & JB, W. (2002). The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosomatic Medicine, 64, 258–266.

    PubMed  Google Scholar 

  • Lacerda, A. L., Keshavan, M. S., Hardan, A. Y., Yorbik, O., Brambilla, P., Sassi, R. B., et al. (2004). Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biological Psychiatry, 55, 353–358.

    PubMed  Google Scholar 

  • Landgrebe, M., Barta, W., Rosengarth, K., Frick, U., Hauser, S., Langguth, B., Rutschmann, R., Greenlee, M. W., Hajak, G., & Eichhammer, P. (2008). Neuronal correlates of symptom formation in functional somatic syndromes: a fMRI study. Neuroimage, 41, 1336–1344.

    PubMed  Google Scholar 

  • Lecrubier, Y. (2006). Physical components of depression and psychomotor retardation. The Journal of Clinical Psychiatry, 67(Suppl 6), 23–26.

    PubMed  Google Scholar 

  • Leong, K., Tham, J. C., Scamvougeras, A., & Vila-Rodriguez, F. (2015). Electroconvulsive therapy treatment in patients with somatic symptom and related disorders. Neuropsychiatric Disease and Treatment, 11, 2565–2572.

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Biswal, B. B., Wang, P., Duan, X., Cui, Q., Chen, H., & Liao, W. (2019). Exploring the functional connectome in white matter. Human Brain Mapping, 40, 4331–4344.

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Biswal, B. B., Meng, Y., Yang, S., Duan, X., Cui, Q., et al. (2020). A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Translational Psychiatry, 10, 147.

    PubMed  PubMed Central  Google Scholar 

  • Lorenzetti, V., Allen, N. B., Fornito, A., & Yucel, M. (2009). Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. Journal of Affective Disorders, 117, 1–17.

    PubMed  Google Scholar 

  • Noll-Hussong, M., Otti, A., Wohlschlaeger, A. M., Zimmer, C., Henningsen, P., Lahmann, C., et al. (2013). Neural correlates of deficits in pain-related affective meaning construction in patients with chronic pain disorder. Psychosomatic Medicine, 75, 124–136.

    PubMed  Google Scholar 

  • Novick, D., Montgomery, W., Aguado, J., Kadziola, Z., Peng, X., Brugnoli, R., & Haro, J. M. (2013). Which somatic symptoms are associated with an unfavorable course in Asian patients with major depressive disorder? Journal of Affective Disorders, 149, 182–188.

    PubMed  Google Scholar 

  • Perez, D. L., Matin, N., Barsky, A., Costumero-Ramos, V., Makaretz, S. J., Young, S. S., et al. (2017). Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 88, 491–497.

    PubMed  Google Scholar 

  • Price, J. L. (1999). Prefrontal cortical networks related to visceral function and mood. Annals of the New York Academy of Sciences, 877, 383–396.

    CAS  PubMed  Google Scholar 

  • Quadt, L., Critchley, H. D., & Garfinkel, S. N. (2018). The neurobiology of interoception in health and disease. Annals of the New York Academy of Sciences, 1428, 112–128.

    PubMed  Google Scholar 

  • Rizvi, S. J., Iskric, A., Calati, R., & Courtet, P. (2017). Psychological and physical pain as predictors of suicide risk: evidence from clinical and neuroimaging findings. Current Opinion in Psychiatry, 30, 159–167.

    PubMed  Google Scholar 

  • Schienle, A., Schafer, A., Hermann, A., Rohrmann, S., & Vaitl, D. (2007). Symptom provocation and reduction in patients suffering from spider phobia: an fMRI study on exposure therapy. European Archives of Psychiatry and Clinical Neuroscience, 257, 486–493.

    PubMed  Google Scholar 

  • Schmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., et al. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900–909.

    CAS  PubMed  Google Scholar 

  • Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13, 334–340.

    PubMed  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6, e25031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaccarino, A. L., Sills, T. L., Evans, K. R., & Kalali, A. H. (2009). Multiple pain complaints in patients with major depressive disorder. Psychosomatic Medicine, 71, 159–162.

    PubMed  Google Scholar 

  • Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein, S., et al. (2015). Parcellating cortical functional networks in individuals. Nature Neuroscience, 18, 1853–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Wei, Q., Wang, C., Xu, J., Wang, K., Tian, Y., & Wang, J. (2019a). Altered functional connectivity patterns of insular subregions in major depressive disorder after electroconvulsive therapy. Brain Imaging and Behavior.

  • Wang, L., Yu, L., Wu, F., Wu, H., & Wang, J. (2019). Altered whole brain functional connectivity pattern homogeneity in medication-free major depressive disorder. Journal of Affective Disorders, 253, 18–25.

    PubMed  Google Scholar 

  • Williams, J. B. (1988). A structured interview guide for the hamilton depression rating scale. Archives of General Psychiatry, 45, 742–747.

    CAS  PubMed  Google Scholar 

  • Witthoft, M., & Hiller, W. (2010). Psychological approaches to origins and treatments of somatoform disorders. Annual Review of Clinical Psychology, 6, 257–283.

    PubMed  Google Scholar 

  • Yoshino, A., Okamoto, Y., Okada, G., Takamura, M., Ichikawa, N., Shibasaki, C., et al. (2018). Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain. Psychological Medicine, 48, 1148–1156.

    CAS  PubMed  Google Scholar 

  • Yuan, H., Zhu, X., Tang, W., Cai, Y., Shi, S., & Luo, Q. (2020). Connectivity between the anterior insula and dorsolateral prefrontal cortex links early symptom improvement to treatment response. Journal of Affective Disorders, 260, 490–497.

    PubMed  Google Scholar 

  • Zu, M., Wang, A., Bai, T., Xie, W., Guan, J., Tian, Y., & Wang, K. (2019). Resting-State functional connectivity between centromedial amygdala and insula as related to somatic symptoms in depressed patients: A preliminary study. Psychosomatic Medicine, 81, 434–440.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Anhui Mental Health Center and the University of Science and Technology of China for their support.

Funding

This study was funded by the Natural Science Foundation of China (31,970,979, 91,432,301, 31,571,149, 81,171,273, and 91,232,717 to K.W., 81,671,354, 91,732,303 to Y.T., 81,601,187 to Q.W.) and the Science Fund for Distinguished Young Scholars of Anhui Province (1808085J23 to Y.T.).

Author information

Authors and Affiliations

Authors

Contributions

Ting Zhang, Tongjian Bai and Kai Wang designed the study. Ting Zhang and Huaming Lv acquired behavior and imaging data. Wen Xie, Anzhen Wang and Jianjun Guan conducted ECT sessions. Qiang Wei, Ting Zhang and Yanghua Tian analyzed imaging data. Ting Zhang, Tongjian Bai and Kai Wang wrote this article, which all authors have reviewed. All authors approved the final version to be published and can certify that no other individuals not listed as authors have made substantial contributions to the paper.

Corresponding authors

Correspondence to Yanghua Tian or Kai Wang.

Ethics declarations

We have obtained the ethical approval of Anhui Medical University Ethics Committee. All subjects involved in this investigation provided written informed consent.

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 98.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Bai, T., Xie, W. et al. Abnormal connectivity of anterior-insular subdivisions and relationship with somatic symptom in depressive patients. Brain Imaging and Behavior 15, 1760–1768 (2021). https://doi.org/10.1007/s11682-020-00371-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00371-x

Keywords

Navigation