Skip to main content

FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response

Abstract

The hemodynamic response function (HRF) represents the transfer function linking neural activity with the functional MRI (fMRI) signal, modeling neurovascular coupling. Since HRF is influenced by non-neural factors, to date it has largely been considered as a confound or has been ignored in many analyses. However, underlying biophysics suggests that the HRF may contain meaningful correlates of neural activity, which might be unavailable through conventional fMRI metrics. Here, we estimated the HRF by performing deconvolution on resting-state fMRI data from a longitudinal sample of 25 healthy controls scanned twice and 44 adults with obsessive-compulsive disorder (OCD) before and after 4-weeks of intensive cognitive-behavioral therapy (CBT). HRF response height, time-to-peak and full-width at half-maximum (FWHM) in OCD were abnormal before treatment and normalized after treatment in regions including the caudate. Pre-treatment HRF predicted treatment outcome (OCD symptom reduction) with 86.4% accuracy, using machine learning. Pre-treatment HRF response height in the caudate head and time-to-peak in the caudate tail were top-predictors of treatment response. Time-to-peak in the caudate tail, a region not typically identified in OCD studies using conventional fMRI activation or connectivity measures, may carry novel importance. Additionally, pre-treatment response height in caudate head predicted post-treatment OCD severity (R = -0.48, P = 0.001), and was associated with treatment-related OCD severity changes (R = -0.44, P = 0.0028), underscoring its relevance. With HRF being a reliable marker sensitive to brain function, OCD pathology, and intervention-related changes, these results could guide future studies towards novel discoveries not possible through conventional fMRI approaches like standard BOLD activation or connectivity.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aguirre, G. K., Zarahn, E., & D'esposito, M. (1998). The variability of human, BOLD hemodynamic responses. Neuroimage, 8(4), 360–369.

    Article  CAS  Google Scholar 

  2. Amico, E., Gomez, F., Di Perri, C., Vanhaudenhuyse, A., Lesenfants, D., Boveroux, P., Bonhomme, V., Brichant, J. F., Marinazzo, D., & Laureys, S. (2014). Posterior cingulate cortex-related co-activation patterns: a resting state FMRI study in propofol-induced loss of consciousness. PLoS One, 9(6), e100012.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  3. Anticevic, A., Hu, S., Zhang, S., Savic, A., Billingslea, E., Wasylink, S., Repovs, G., Cole, M., Bednarski, S., Krystal, J., Bloch, M., Li, C.-S., & Pittenger, C. (2014). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biological Psychiatry, 75, 595–605.

    Article  Google Scholar 

  4. Apostolova, I., Block, S., Buchert, R., Osen, B., Conradi, M., Tabrizian, S., Gensichen, S., Schroder-Hartwig, K., Fricke, S., Rufer, M., Weiss, A., Hand, I., Clausen, M., & Obrocki, J. (2010). Effects of behavioral therapy or pharmacotherapy on brain glucose metabolism in subjects with obsessive–compulsive disorder as assessed by brain FDG PET. Psychiatry Research: Neuroimaging, 184, 105–116.

    Article  CAS  Google Scholar 

  5. Arbabshirani, M., Plis, S., Sui, J., & Calhoun, V. (2017). Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, 145(Pt B), 137–165.

    Article  Google Scholar 

  6. Arcaro, M., Pinsk, M., & Kastner, S. (2015). The anatomical and functional Organization of the Human Visual Pulvinar. Journal of Neuroscience, 35(27), 9848–9871.

    Article  CAS  Google Scholar 

  7. Aylward, E., Sparks, B., Field, K., Yallapragada, V., Shpritz, B., Rosenblatt, A., Brandt, J., Gourley, L. M., Liang, K., Zhou, H., Margolis, R. L., & Ross, C. A. (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63(1), 66–72.

  8. Banca, P., Voon, V., Vestergaard, M., Philipiak, G., Almeida, I., Pocinho, F., et al. (2015). Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain, 138(Pt 3), 798–811.

    PubMed Central  Article  PubMed  Google Scholar 

  9. Behzadi, Y., Restom, K., Liau, J., & Liu, T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90–101.

    Article  Google Scholar 

  10. Beucke, J., Sepulcre, J., Talukdar, T., Linnman, C., Zschenderlein, K., Endrass, T., Kaufmann, C., & Kathmann, N. (2013). Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry, 70(6), 619–629.

    Article  Google Scholar 

  11. Biessmann, F., Murayama, Y., Logothetis, N., Müller, K., & Meinecke, F. (2012). Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions. Neuroimage, 61(4), 1031–1042.

    Article  Google Scholar 

  12. Boly, M., Sasai, S., Gosseries, O., Oizumi, M., Casali, A., Massimini, M., & Tononi, G. (2015). Stimulus set meaningfulness and neurophysiological differentiation: a functional magnetic resonance imaging study. PLoS One, 10(5), e0125337.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  13. Brennan, B., Rauch, S., Jensen, J., & Pope, H. (2013). A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biological Psychiatry, 73(1), 24–31.

    Article  Google Scholar 

  14. Brown, G. G., Eyler Zorrilla, L. T., Georgy, B., Kindermann, S. S., Wong, E. C., & Buxton, R. B. (2003). BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23(7), 829–837.

    Article  CAS  Google Scholar 

  15. Busija, D. W., Bari, F., Domoki, F., & Louis, T. (2007). Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Research Reviews, 56(1), 89–100.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  16. Buxton, R. (2002). Introduction to functional magnetic resonance imaging: principles and techniques. Energy, 24(2), xi 523

  17. Buxton, R., Wong, E., & Frank, L. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine, 39(6), 855–864.

    Article  CAS  Google Scholar 

  18. Buzsáki, G., Kaila, K., & Raichle, M. (2007). Inhibition and brain work. Neuron, 56(5), 771–783.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  19. Chen, J., & Glover, G. (2015). BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz. Neuroimage, 107, 207–218.

    Article  Google Scholar 

  20. Cheng, Y., Xu, J., Nie, B., Luo, C., Yang, T., Li, H., Lu, J., Xu, L., Shan, B., & Xu, X. (2013). Abnormal resting-state activities and functional connectivities of the anterior and the posterior cortexes in medication-naïve patients with obsessive-compulsive disorder. PLoS One, 8(6), e67478.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  21. Cohen, Z., Bonvento, G., Lacombe, P., & Hamel, E. (1996). Serotonin in the regulation of brain microcirculation. Progress in Neurobiology, 50(4), 335–362.

    Article  CAS  Google Scholar 

  22. Craddock, R., Holtzheimer III, P., Hu, X., & Mayberg, H. (2009). Disease state prediction from resting state functional connectivity. Magnetic Resonance in Medicine, 62(6), 1619–1628.

    PubMed Central  Article  PubMed  Google Scholar 

  23. David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, S., Segebarth, C., & Depaulis, A. (2008). Identifying neural drivers with functional MRI: An electrophysiological validation. PLoS Biology, 23(6), 2683–2697.

    Google Scholar 

  24. Deshpande, G., Sathian, K., & Hu, X. (2010a). Effect of hemodynamic variability on granger causality analysis of fMRI. Neuroimage, 52(3), 884–896.

    Article  Google Scholar 

  25. Deshpande, G., Li, Z., Santhanam, P., Coles, C., Lynch, M., Hamann, S., & Hu, X. (2010b). Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity. PLoS One, 5(12), e14277.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  26. Duarte, J., Pereira, J., Quendera, B., Raimundo, M., Moreno, C., Gomes, L., Carrilho, F., & Castelo-Branco, M. (2015). Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: An fMRI study. Journal of Cerebral Blood Flow and Metabolism, 35(10), 1671–1680.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. Feng, C., Deshpande, G., Liu, C., Gu, R., Luo, Y.-J., & Krueger, F. (2015). Diffusion of responsibility attenuates altruistic punishment: A functional magnetic resonance imaging effective connectivity study. Human Brain Mapping, 37(2), 663–677.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  28. Friston, K., Harrison, L., & Penny, W. (2013). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302.

    Article  Google Scholar 

  29. Glover, G. (1999). Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage, 9(4), 416–429.

    Article  CAS  Google Scholar 

  30. Golestani, A., Wei, L., & Chen, J. (2016). Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults. Neuroimage, 138, 147–163.

    Article  Google Scholar 

  31. Goodman, W., Price, L., Rasmussen, S., Mazure, C., Fleischmann, R., Hill, C., Heninger, G., & Charney, D. (1989). The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 1006–1011.

  32. Goozée, R., Handley, R., Kempton, M., & Dazzan, P. (2014). A systematic review and meta-analysis of the effects of antipsychotic medications on regional cerebral blood flow (rCBF) in schizophrenia: Association with response to treatment. Neuroscience and Biobehavioral Reviews, 43, 118–136.

    Article  CAS  Google Scholar 

  33. Grant, M., Wood, K., Sreenivasan, K., Wheelock, M., White, D., Thomas, J., Knight, D., & Deshpande, G. (2015). Influence of early life stress on intra- and extra-amygdaloid causal connectivity. Neuropsychopharmacology, 40(7), 1782–1793.

    PubMed Central  Article  PubMed  Google Scholar 

  34. Grieder, M., Crinelli, R., Jann, K., Federspiel, A., Wirth, M., Koenig, T., Stein, M., Wahlund, L., & Dierks, T. (2013). Correlation between topographic N400 anomalies and reduced cerebral blood flow in the anterior temporal lobes of patients with dementia. Journal of Alzheimer's Disease, 36(4), 711–731.

    Article  Google Scholar 

  35. Gürsel, D., Avram, M., Sorg, C., Brandl, F., & Koch, K. (2018). Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: A meta-analysis of resting-state functional connectivity. Neuroscience and Biobehavioral Reviews, 87, 151–160.

    Article  Google Scholar 

  36. Halani, S., Kwinta, J., Golestani, A., Khatamian, Y., & Chen, J. (2015). Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity. Neuroimage, 110, 110–123.

    Article  Google Scholar 

  37. Hamilton, J., Farmer, M., Fogelman, P., & Gotlib, I. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78, 224–230.

    PubMed Central  Article  PubMed  Google Scholar 

  38. Hampstead, B., Khoshnoodi, M., Yan, W., Deshpande, G., & Sathian, K. (2016). Patterns of effective connectivity between memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults. NeuroImage, 124(A), 997–1008.

    Article  CAS  Google Scholar 

  39. Handwerker, D. A., Ollinger, J. M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage, 21(4), 1639–1651.

    Article  Google Scholar 

  40. Handwerker, D. A., Gonzalez-Castillo, J., D'Esposito, M., & Bandettini, P. A. (2012). The continuing challenge of understanding and modeling hemodynamic variation in fMRI. Neuroimage, 62(2), 1017–1023.

    Article  Google Scholar 

  41. Havlicek, M., Jan, J., Brazdil, M., & Calhoun, V. (2010). Dynamic granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage, 53(1), 65–77.

    Article  Google Scholar 

  42. Havlicek, M., Friston, K. J., Jan, J., Brazdil, M., & Calhoun, V. D. (2011). Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering. Neuroimage, 56(4), 2109–2128.

    Article  Google Scholar 

  43. Hou, J.-M., Zhao, M., Zhang, W., Song, L.-H., Wu, W.-J., Wang, J., Zhou, D.-Q., Xie, B., He, M., Guo, J.-W., Qu, W., & Li, H.-T. (2014). Resting-state functional connectivity abnormalities in patients with obsessive–compulsive disorder and their healthy first-degree relatives. Journal of Psychiatry and Neuroscience, 39(5), 304–311.

    PubMed Central  Article  PubMed  Google Scholar 

  44. Johnson, A., & Paulsen, J. (2014). Understanding behavior. In D. Lovecky & K. Tarapata (Eds.), Huntington’s disease: A guide for professionals. New York: Huntington’s Disease Society of America.

    Google Scholar 

  45. Kim, J., & Ress, D. (2016). Arterial impulse model for the BOLD response to brief neural activation. Neuroimage, 124(Pt A), 394–408.

    Article  Google Scholar 

  46. Kim, H., Ghazizadeh, A., & Hikosaka, O. (2014). Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Frontiers in Neuroanatomy, 8, 120.

    PubMed Central  Article  PubMed  Google Scholar 

  47. Lacey, S., Stilla, R., Sreenivasan, K., Deshpande, G., & Sathian, K. (2014). Spatial imagery in haptic shape perception. Neuropsychologia, 60, 144–158.

    PubMed Central  Article  PubMed  Google Scholar 

  48. Lamichhane, B., Adhikari, B. M., Brosnan, S. F., & Dhamala, M. (2014). The neural basis of perceived unfairness in economic exchanges. Brain Connectivity, 4(8), 619–630.

    PubMed Central  Article  PubMed  Google Scholar 

  49. Lanka, P., Rangaprakash, D., Dretsch, M. N., Katz, J. S., Denney, T. S., Jr., & Deshpande, G. (2019). Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain imaging and behavior. https://doi.org/10.1007/s11682-019-00191-8

    Article  Google Scholar 

  50. Lemke, H., de Castro, A., Schlattmann, P., Heuser, I., & Neu, P. (2010). Cerebrovascular reactivity over time-course - from major depressive episode to remission. Journal of Psychiatry Research, 44(3), 132–136.

    Article  Google Scholar 

  51. Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Psychology and Functional Imaging, 31(2), 85–93.

    CAS  Google Scholar 

  52. Levin, J., Ross, M., Mendelson, J., Kaufman, M., Lange, N., Maas, L., Mello, N., Cohen, B., & Renshaw, P. (1998). Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Research, 82(3), 135–146.

    Article  CAS  Google Scholar 

  53. Libero, L., DeRamus, T., Lahti, A., Deshpande, G., & Kana, R. (2015). Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 66, 46–59.

    PubMed Central  Article  PubMed  Google Scholar 

  54. Liu, F., Zhuo, C., & Yu, C. (2016). Altered Cerebral Blood Flow Covariance Network in Schizophrenia. Frontiers in neuroscience, 10, 308.

    PubMed Central  PubMed  Google Scholar 

  55. Maia, T., Cooney, R., & Peterson, B. (2008). The neural bases of obsessive-compulsive disorder in children and adults. Development and Psychopathology, 20(4), 1251–1283.

    PubMed Central  Article  PubMed  Google Scholar 

  56. Maltby, N., Tolin, D., Worhunsky, P., O’Keefe, T., & Kiehl, K. (2005). Dysfunctional action monitoring hyperactivates frontal–striatal circuits in obsessive–compulsive disorder: An event-related fMRI study. Neuroimage, 24, 495–503.

    Article  Google Scholar 

  57. Marinazzo, D. (2013). “Code for HRF blind deconvolution,” [Online]. Available: http://users.ugent.be/~dmarinaz/HRF_deconvolution.html. [Accessed Sept 2016].

  58. Mataix-Cols, D., Fernández de la Cruz, L., Nordsletten, A., Lenhard, F., Isomura, K., & Simpson, H. (2016). Towards an international expert consensus for defining treatment response, remission, recovery and relapse in obsessive-compulsive disorder. World Psychiatry, 15(1), 80–81.

  59. McDonough, I., Bender, A., Patihis, L., Stinson, E., Letang, S. & Miller, W. (2019). The trouble interpreting fMRI studies in populations with cerebrovascular risk: the use of a subject-specific hemodynamic response function in a study of age, vascular risk, and memory. bioRxiv, https://doi.org/10.1101/512343

  60. Menzies, L., Chamberlain, S., Laird, A., Thelen, S., Sahakian, B., & Bullmore, E. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited. Neuroscience and Biobehavioral Reviews, 32(3), 525–549.

    Article  Google Scholar 

  61. Miezin, F., Maccotta, L., Ollinger, J., Petersen, S., & Buckner, R. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage, 11(6 Pt 1), 735–759.

    Article  CAS  Google Scholar 

  62. Milad, M., Furtak, S., Greenberg, J., Keshaviah, A., Im, J., Falkenstein, M., Jenike, M., Rauch, S., & Wilhelm, S. (2013). Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry, 70(6), 608–618.

    Article  Google Scholar 

  63. Mintzopoulos, D., Gillis, T., Robertson, H., Dalia, T., Feng, G., Rauch, S., & Kaufman, M. (2016). Striatal magnetic resonance spectroscopy abnormalities in young adult SAPAP3 knockout mice. Biol Psychiatry Cogn Neurosci Neuroimaging., 1(1), 39–48.

    PubMed Central  PubMed  Google Scholar 

  64. Moody, T., Morfini, F., Cheng, G., Sheen, C., Tadayonnejad, R., Reggente, N., O'Neill, J., & Feusner, J. (2017). Mechanisms of cognitive-behavioral therapy for obsessive-compulsive disorder involve robust and extensive increases in brain network connectivity. Translational Psychiatry, 7(9), e1230.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  65. Morris, L., Baek, K., & Voon, V. (2017). Distinct cortico-striatal connections with subthalamic nucleus underlie facets of compulsivity. Cortex, 88, 143–150.

    PubMed Central  Article  PubMed  Google Scholar 

  66. Muthukumaraswamy, S. D., Evans, C. J., Edden, R. A., Wise, R. G., & Singh, K. D. (2012). Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition. Human Brain Mapping, 33(2), 455–465.

    Article  Google Scholar 

  67. Nakatani, E., Nakgawa, A., Ohara, Y., Goto, S., Uozumi, N., Iwakiri, M., Yamamoto, Y., Motomura, K., Iikura, Y., & Yamagami, T. (2003). Effects of behavior therapy on regional cerebral blood flow in obsessive–compulsive disorder. Psychiatry Research: Neuroimaging, 124, 113–120.

    Article  Google Scholar 

  68. Niu, Q., Yang, L., Song, X., Chu, C., Liu, H., Zhang, L., Li, Y., Zhang, X., Cheng, J., & Li, Y. (2017). Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder. Neuropsychiatric Disease and Treatment, 13, 507–513.

    PubMed Central  Article  PubMed  Google Scholar 

  69. Noseworthy, M., Alfonsi, J., & Bells, S. (2003). Attenuation of brain BOLD response following lipid ingestion. Human Brain Mapping, 20(2), 116–121.

    PubMed Central  Article  PubMed  Google Scholar 

  70. O’Neill, J., Lai, T., Sheen, C., Salgari, G., Ly, R., Armstrong, C., Chang, S., Levitt, J., Salamon, N., Alger, J., & Feusner, J. (2016). Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Research, 254, 34–40.

    PubMed Central  Article  PubMed  Google Scholar 

  71. Olatunji, B., Ferreira-Garcia, R., Caseras, X., Fullana, M., Wooderson, S., Speckens, A., Lawrence, N., Giampietro, V., Brammer, M., Phillips, M., Fontenelle, L., & Mataix-Cols, D. (2014). Predicting response to cognitive behavioral therapy in contamination-based obsessive-compulsive disorder from functional magnetic resonance imaging. Psychological Medicine, 44(10), 2125–2137.

    Article  CAS  Google Scholar 

  72. O'Neill, J., & Feusner, J. (2015). Cognitive-behavioral therapy for obsessive-compulsive disorder: Access to treatment, prediction of long-term outcome with neuroimaging. Psychology Research and Behavior Management, 8, 211–223.

    PubMed Central  Article  PubMed  Google Scholar 

  73. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536–551.

    Article  Google Scholar 

  74. Qiu, L., Fu, X., Wang, S., Tang, Q., Chen, X., Cheng, L., Zhang, F., Zhou, Z., & Tian, L. (2017). Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI. Neuroscience Letters, 640, 99–104.

    Article  CAS  Google Scholar 

  75. Raemaekers, M., du Plessis, S., Ramsey, N., Weusten, J., & Vink, M. (2012). Test-retest variability underlying fMRI measurements. Neuroimage, 60(1), 717–727.

    Article  CAS  Google Scholar 

  76. Rangaprakash, D., Deshpande, G., Daniel, T., Goodman, A., Robinson, J., Salibi, N., Katz, J., Denney, T., & Dretsch, M. (2017a). Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild traumatic brain injury and posttraumatic stress disorder. Human Brain Mapping, 38(6), 2843–2864.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  77. Rangaprakash, D., Dretsch, M. N., Yan, W., Katz, J. S., Denney, T. S., & Deshpande, G. (2017b). Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies. NeuroImage: Clinical, 16, 409–417.

    Article  CAS  Google Scholar 

  78. Rangaprakash, D., Dretsch, M. N., Yan, W., Katz, J. S., Denney, T. S., & Deshpande, G. (2017c). Hemodynamic response function parameters obtained from resting-state functional MRI data in soldiers with trauma. Data in Brief, 14, 558–562.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  79. Rangaprakash, D., Dretsch, M., Venkatraman, A., Katz, J., Denney, T., & Deshpande, G. (2018a). Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Human Brain Mapping, 39(1), 264–287.

    Article  CAS  Google Scholar 

  80. Rangaprakash, D., Wu, G.-R., Marinazzo, D., Hu, X., & Deshpande, G. (2018b). Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magnetic Resonance in Medicine, 80(4), 1697–1713.

  81. Rasgon, A., Lee, W., Leibu, E., Laird, A., Glahn, D., Goodman, W., & Frangou, S. (2017). Neural correlates of affective and non-affective cognition in obsessive compulsive disorder: A meta-analysis of functional imaging studies. European Psychiatry, 46, 25–32.

    Article  CAS  Google Scholar 

  82. Rauch, S., Whalen, P., Savage, C., Curran, T., Kendrick, A., Brown, H., Bush, G., Breiter, H., & Rosen, B. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124–132.

    Article  CAS  Google Scholar 

  83. Reynell, C., & Harris, J. (2013). The BOLD signal and neurovascular coupling in autism. Developmental Cognitive Neuroscience, 6, 72–79.

    PubMed Central  Article  PubMed  Google Scholar 

  84. Ryali, S., Supekar, K., Chen, T., & Menon, V. (2011). Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage, 54(2), 807–823.

    Article  Google Scholar 

  85. Ryali, S., Chen, T., Supekar, K., Tu, T., Kochalka, J., Cai, W., & Menon, V. (2016a). Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data. Journal of Neuroscience Methods, 268, 142–153.

    PubMed Central  Article  PubMed  Google Scholar 

  86. Ryali, S., Shih, Y., Chen, T., Kochalka, J., Albaugh, D., Fang, Z., Supekar, K., Lee, J., & Menon, V. (2016b). Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions. Neuroimage, 132, 398–405.

    Article  Google Scholar 

  87. Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2(1), 25–32.

    PubMed Central  Article  PubMed  Google Scholar 

  88. Saxena, S., & Rauch, S. (2000). Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. The Psychiatric Clinics of North America, 23(3), 563–586.

    Article  CAS  Google Scholar 

  89. Saxena, S., Gorbis, E., O'Neill, J., Baker, S., Mandelkern, M., Maidment, K., Chang, S., Salamon, N., Brody, A., Schwartz, J., & London, E. (2009). Rapid effects of brief intensive cognitive-behavioral therapy on brain glucose metabolism in obsessive-compulsive disorder. Molecular Psychiatry, 14(2), 197–205.

    Article  CAS  Google Scholar 

  90. Seger, C., & Cincotta, C. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25(11), 2941–2951.

    Article  CAS  Google Scholar 

  91. Sreenivasan, K., Havlicek, M., & Deshpande, G. (2015). Non-parametric hemodynamic deconvolution of fMRI using homomorphic filtering. IEEE Transactions on Medical Imaging, 34(5), 1155–1163.

    Article  Google Scholar 

  92. Stern, E., Fitzgerald, K., Welsh, R., Abelson, J., & Taylor, S. (2012). Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS One, 7(5), e36356.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  93. Tadayonnejad, R., Yang, S., Kumar, A., & Ajilore, O. (2015). Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. Journal of Affective Disorders, 172, 241–250.

    Article  Google Scholar 

  94. Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Frontiers in physiology, 3, 15.

    PubMed Central  Article  PubMed  Google Scholar 

  95. Tang, W., Zhu, Q., Gong, X., Zhu, C., Wang, Y., & Chen, S. (2016). Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: A voxel-based morphometric and fMRI study of the whole brain. Behavioural Brain Research, 313, 17–22.

    Article  Google Scholar 

  96. Taylor, A., Kim, J., & Ress, D. (2018). Characterization of the hemodynamic response function across the majority of human cerebral cortex. Neuroimage, 173, 322–331.

    Article  Google Scholar 

  97. van den Heuvel, O., van Wingen, G., Soriano-Mas, C., Alonso, P., Chamberlain, S., Nakamae, T., Denys, D., Goudriaan, A., & Veltman, D. (2016). Brain circuitry of compulsivity. European Neuropsychopharmacology, 26(5), 810–827.

    Article  CAS  Google Scholar 

  98. van der Straten, A. L., Denys, D., & van Wingen, G. A. (2017). Impact of treatment on resting cerebral blood flow and metabolism in obsessive compulsive disorder: a meta-analysis. Scientific reports, 7(1), 17464.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  99. Wang, Y., Katwal, S., Rogers, B., Gore, J., & Deshpande, G. (2017a). Experimental Validation of Dynamic Granger Causality for Inferring Stimulus-Evoked Sub-100 ms Timing Differences from fMRI. IEEE transactions on neural systems and rehabilitation engineering, 25(6), 539–546.

  100. Wang, Y., David, O., Hu, X., & Deshpande, G. (2017b). Can Patel’s τ accurately estimate directionality of connections in brain networks from fMRI? Magnetic Resonance in Medicine, 78(5), 2003–2010.

  101. Wen, S., Cheng, M., Cheng, M., Yue, J., Li, J., & Xie, L. (2014). Neurocognitive dysfunction and regional cerebral blood flow in medically naïve patients with obsessive-compulsive disorder. Developmental Neuropsychology, 39(1), 37–50.

    Article  CAS  Google Scholar 

  102. Wu, G., Liao, W., Stramaglia, S., Ding, J., Chen, H., & Marinazzo, D. (2013). A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Medical Image Analysis, 17(3), 365–374.

    Article  Google Scholar 

  103. Yamanishi, T., Nakaaki, S., Omori, I., Hashimoto, N., Shinagawa, Y., Hongo, J., Horikoshi, M., Tohyama, J., Akechi, T., Soma, T., Iidaka, T., & Furukawa, T. (2009). Changes after behavior therapy among responsive and nonresponsive patients with obsessive–compulsive disorder. Psychiatry Research: Neuroimaging, 172, 242–250.

    Article  Google Scholar 

  104. Yan, W., Rangaprakash, D., & Deshpande, G. (2018a). Estimated hemodynamic response function parameters obtained from resting state BOLD fMRI signals in subjects with autism spectrum disorder and matched healthy subjects. Data in brief, 19, 1305–1309

  105. Yan, W., Rangaprakash, D., & Deshpande, G. (2018b). Aberrant hemodynamic responses in autism: Implications for resting state fMRI functional connectivity studies. NeuroImage: Clinical, 19, 320–330.

    Article  Google Scholar 

  106. Yang, X.-Y., Sun, J., Luo, J., Zhong, Z.-X., Li, P., Yao, S.-M., Xiong, H.-F., Huang, F.-F., & Li, Z.-J. (2015). Regional homogeneity of spontaneous brain activity in adult patients with obsessive–compulsive disorder before and after cognitive behavioural therapy. Journal of Affective Disorders, 188, 243–251.

    Article  Google Scholar 

  107. Zuo, X., Di Martino, A., Kelly, C., Shehzad, Z., Gee, D., Klein, D., Castellanos, F., Biswal, B., & Milham, M. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432–1445.

    Article  Google Scholar 

  108. Zürcher, N., Bhanot, A., McDougle, C., & Hooker, J. (2015). A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: Current state and future research opportunities. Neuroscience and Biobehavioral Reviews, 52, 56–73.

    Article  Google Scholar 

  109. Zurowski, B., Kordon, A., Weber-Fahr, W., Voderholzer, U., Kuelz, A., Freyer, T., Wahl, K., Büchel, C., & Hohagen, F. (2012). Relevance of orbitofrontal neurochemistry for the outcome of cognitive-behavioural therapy in patients with obsessive–compulsive disorder. European Archives of Psychiatry and Clinical Neuroscience, 262(7), 617–624.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Michelle Massi and Natalie Abrahami for their role in providing cognitive-behavioral therapy treatment for the participants with obsessive-compulsive disorder in this study.

Funding

This study was supported by US National Institutes of Mental Health (NIMH) grant R01 MH085900 (to Drs. Feusner and O’Neill).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jamie D. Feusner.

Ethics declarations

Conflict of interest

All the authors (D.R., R.T., G.D, J.O., J.D.F.) declare no conflicts of interest.

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. UCLA institutional review board (IRB) approved the study procedures.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1053 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rangaprakash, D., Tadayonnejad, R., Deshpande, G. et al. FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response. Brain Imaging and Behavior 15, 1622–1640 (2021). https://doi.org/10.1007/s11682-020-00358-8

Download citation

Keywords

  • Functional magnetic resonance imaging
  • fMRI
  • Hemodynamic response function
  • HRF
  • Obsessive-compulsive disorder
  • OCD
  • Cognitive-behavioral therapy
  • CBT
  • Machine learning