Disrupted pathways from frontal-parietal cortex to basal ganglia and cerebellum in patients with unmedicated obsessive compulsive disorder as observed by whole-brain resting-state effective connectivity analysis – a small sample pilot study



To date, a systematic characterization of abnormalities in resting-state effective connectivity (rsEC) in obsessive–compulsive disorder (OCD) is lacking. The present study aimed to systematically characterize whole-brain rsEC in OCD patients as compared to healthy controls.


Using resting-state fMRI data of 50 unmedicated patients with OCD and 50 healthy participants, we constructed whole-brain rsEC networks using Granger causality analysis followed by univariate and multivariate comparisons between patients and controls. Similar analyses were performed for resting-state functional connectivity (rsFC) networks to examine how rsFC and rsEC differentially capture abnormal brain connectivity in OCD.


Univariate comparisons identified 10 rsEC networks that were significantly disrupted in patients, and which were mainly associated with frontal-parietal cortex, basal ganglia, and cerebellum. Conversely, abnormal rsFC networks were widely distributed throughout the whole brain. Multivariate pattern analysis revealed a classification accuracy as high as 80.5% for distinguishing patients from controls using combined whole-brain rsEC and rsFC.


The results of the present study suggest disrupted communication of information from frontal-parietal cortex to basal ganglia and cerebellum in OCD patients. Using combined whole-brain rsEC and rsFC, multivariate pattern analysis revealed a classification accuracy as high as 80.5% for distinguishing patients from controls. The alterations observed in OCD patients could aid in identifying treatment mechanisms for OCD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Abe, Y., Sakai, Y., Nishida, S., Nakamae, T., Yamada, K., Fukui, K., et al. (2015). Hyper-influence of the orbitofrontal cortex over the ventral striatum in obsessive-compulsive disorder. European Neuropsychopharmacology,25(11), 1898–1905.

  2. Aggleton, J. P., O’Mara, S. M., Vann, S. D., Wright, N. F., Tsanov, M., & Erichsen, J. T. (2010). Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. European Journal of Neuroscience,31(12), 2292–2307.

    PubMed  Google Scholar 

  3. Atmaca, M., Yildirim, H., Ozdemir, H., Tezcan, E., & Poyraz, A. K. (2007). Volumetric MRI study of key brain regions implicated in obsessive-compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry,31(1), 46–52.

    PubMed  Google Scholar 

  4. Batistuzzo, M. C., Balardin, J. B., Martin Mda, G., Hoexter, M. Q., Bernardes, E. T., Borcato, S., et al. (2015). Reduced prefrontal activation in pediatric patients with obsessive-compulsive disorder during verbal episodic memory encoding. Journal of the American Academy of Child and Adolescent Psychiatry,54(10), 849–858.

  5. Beucke, J. C., Kaufmann, C., Linnman, C., Gruetzmann, R., Endrass, T., Deckersbach, T., et al. (2012). Altered cingulostriatal coupling in obsessive-compulsive disorder. Brain Connectivity,2(4), 191–202.

  6. Biezonski, D., Cha, J., Steinglass, J., & Posner, J. (2016). Evidence for thalamocortical circuit abnormalities and associated cognitive dysfunctions in underweight individuals with anorexia nervosa. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology,41, 1560–1568.

  7. Boedhoe, P. S., Schmaal, L., Abe, Y., Ameis, S. H., Arnold, P. D., Batistuzzo, M. C., et al. (2017). Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. The American Journal of Psychiatry,174(1), 60–69.

  8. Bostan, A. C., & Strick, P. L. (2010). The cerebellum and basal ganglia are interconnected. Neuropsychology Review,20(3), 261–270.

    PubMed  PubMed Central  Google Scholar 

  9. Cano, M., Alonso, P., Martínez-Zalacaín, I., Subirà, M., Real, E., Segalàs, C., et al. (2018). Altered functional connectivity of the subthalamus and the bed nucleus of the stria terminalis in obsessive-compulsive disorder. Psychological Medicine,48(6), 919–928.

  10. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for “Pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience,4, 13.

    PubMed  PubMed Central  Google Scholar 

  11. Chen, G., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., Saad, Z. S., & Cox, R. W. (2009) Granger causality via vector auto-regression tuned for fMRI data analysis. Paper presented at: Proc Intl Soc Mag Reson Med. 2009.

  12. Chen, Y.-H., Li, S.-F., Lv, D., Zhu, G.-D., Wang, Y.-H., Meng, X., et al. (2018). Decreased intrinsic functional connectivity of the salience network in drug-naïve patients with obsessive-compulsive disorder. Frontiers in Neuroscience,12, 889.

  13. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning and Memory,4(1), 1–35.

    CAS  PubMed  Google Scholar 

  14. De Smet, H. J., Baillieux, H., De Deyn, P. P., Mariën, P., & Paquier, P. (2007). The cerebellum and language: the story so far. Folia Phoniatrica Et Logopaedica, 59(4), 165–170.

    PubMed  Google Scholar 

  15. de Wit, S. J., van der Werf, Y. D., Mataix-Cols, D., Trujillo, J. P., van Oppen, P., Veltman, D. J., et al. (2015). Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder. Psychological Medicine,45(14), 3059–3073.

  16. Dong, C., Yang, Q., Liang, J., Seger, C. A., Han, H., Ning, Y., et al. (2019). Impairment in the goal-directed corticostriatal learning system as a biomarker for obsessive-compulsive disorder. Psychological Medicine,5, 1–11.

  17. Eng, G. K., Sim, K., & Chen, S. H. (2015). Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neuroscience and Biobehavioral Reviews,52, 233–257.

    PubMed  Google Scholar 

  18. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience,8(11), 1481–1489.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex,26(8), 3508–3526.

  20. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology,101(6), 3270–3283.

    PubMed  PubMed Central  Google Scholar 

  21. Friston, K. J. (2011). Functional and effective connectivity in neuroimaging: a synthesis. Brain Connectivity,1(1), 13–36.

    PubMed  Google Scholar 

  22. Geller, D. A., Biederman, J., Faraone, S., Agranat, A., Cradock, K., Hagermoser, L., et al. (2001). Developmental aspects of obsessive compulsive disorder: findings in children, adolescents, and adults. Journal of Nervous and Mental Disease,189, 471–477.

  23. Gonçalves, O. F., Sousa, S., Carvalho, S., Leite, J., Ganho, A., Fernandes-Gonçalves, A., et al. (2017). Alterations of gray and white matter morphology in obsessive compulsive disorder. Psicothema, 29(1), 35–42.

    PubMed  Google Scholar 

  24. Goodman, W. K., Price, L. H., Rasmusson, S. A., Mazure, C., Delgado, P., Henninger, G. R., et al. (1989). The YaleBrown obsessive compulsive scale: I. Development, use, and reliability. Archives of General Psychiatry,46, 1006–1011.

  25. Goodman, W. K., Price, L. H., Rasmusson, S. A., Mazure, C., Delgado, P., Henninger, G. R., et al. (1989). Yale-Brown obsessive compulsive scale: II. Archives of General Psychiatry,46, 1012–1018.

  26. Göttlich, M., Krämer, U. M., Kordon, A., Hohagen, F., & Zurowski, B. (2014). Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Human Brain Mapping,35(11), 5617–5632.

    PubMed  PubMed Central  Google Scholar 

  27. Grant, J. E. (2014). Clinical practice: obsessive-compulsive disorder. New England Journal of Medicine,371, 646–653.

    PubMed  Google Scholar 

  28. Gürsel, D. A., Avram, M., Sorg, C., Brandl, F., & Koch, K. (2018). Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neuroscience and Biobehavioral Reviews,87, 151–160.

    PubMed  Google Scholar 

  29. Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: the role of the thalamus. Brain Research Bulletin,78(2–3), 69–74.

    PubMed  Google Scholar 

  30. Hahn, K., Myers, N., Prigarin, S., Rodenacker, K., Kurz, A., Förstl, H., et al. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer’s disease - revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage, 81, 96–109.

    PubMed  Google Scholar 

  31. Hamilton, M. (1959). The assessment of anxiety states by rating. British Journal of Medical Psychology,32, 50–55.

    CAS  PubMed  Google Scholar 

  32. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry,23, 56–62.

    CAS  PubMed  Google Scholar 

  33. Han, H. J., Jung, W. H., Yun, J. Y., Park, J. W., Cho, K. K., Hur, J. W., et al. (2016). Disruption of effective connectivity from the dorsolateral prefrontal cortex to the orbitofrontal cortex by negative emotional distraction in obsessive-compulsive disorder. Psychological Medicine,46(5), 921–932.

  34. Haynes, W. I. A., Clair, A. H., Fernandez-Vidal, S., Gholipour, B., Morgiève, M., & Mallet, L. (2018). Altered anatomical connections of associative and limbic cortico-basal-ganglia circuits in obsessive-compulsive disorder. European Psychiatry,51, 1–8.

    PubMed  Google Scholar 

  35. He, H., & Liu, T. T. (2012). A geometric view of global signal confounds in resting-state functional MRI. Neuroimage, 59(3), 2339–2348.

    PubMed  Google Scholar 

  36. He, X., Steinberg, E., Stefan, M., Fontaine, M., Simpson, H. B., & Marsh, R. (2018). Altered frontal interhemispheric and fronto-limbic structural connectivity in unmedicated adults with obsessive-compulsive disorder. Human Brain Mapping,39(2), 803–810.

    PubMed  Google Scholar 

  37. Henry, J. D. (2006). A meta-analytic review of Wisconsin Card Sorting Test and verbal fluency performance in obsessive-compulsive disorder. Cognitive Neuropsychiatry, 11(2), 56–76. https://doi.org/10.1080/13546800444000227.

  38. Hibar, D. P., Cheung, J. W., Medland, S. E., Mufford, M. S., Jahanshad, N., Dalvie, S., et al. (2018). Significant concordance of genetic variation that increases both the risk for obsessive-compulsive disorder and the volumes of the nucleus accumbens and putamen. British Journal of Psychiatry,213, 430–436.

  39. Hillebrandt, H., Dumontheil, I., Blakemore, S. J., & Roiser, J. P. (2013). Dynamic causal modelling of effective connectivity during perspective taking in a communicative task. Neuroimage,76, 116–124.

    PubMed  Google Scholar 

  40. Hirschtritt, M. E., Bloch, M. H., & Mathews, C. A. (2017). Obsessive-compulsive disorder: advances in diagnosis and treatment. JAMA,317, 1358–1367.

    PubMed  Google Scholar 

  41. Hu, X., Du, M., Chen, L., Li, L., Zhou, M., Zhang, L., et al. (2017). Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neuroscience and Biobehavioral Reviews,78, 91–103.

  42. Iwabuchi, S. J., & Palaniyappan, L. (2017). Abnormalities in the effective connectivity of visuothalamic circuitry in schizophrenia. Psychological Medicine,47(7), 1300–1310.

    CAS  PubMed  Google Scholar 

  43. Jung, W. H., Yücel, M., Yun, J. Y., Yoon, Y. B., Cho, K. I., Parkes, L., et al. (2017). Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder. Human Brain Mapping,38(1), 109–119.

  44. Kong, X. Z., Boedhoe, P. S. W., Abe, Y., Alonso, P., Ameis, S. H., Arnold, P. D., et al. (2019) Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA consortium. Biological Psychiatry. 2019.

  45. Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B. A., & Bandettini, P. A. (2017). Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage, 154, 59–80.

  46. Lambrecq, V., Rotge, J. Y., Jaafari, N., Aouizerate, B., Langbour, N., Bioulac, B., et al. (2014). Differential role of visuospatial working memory in the propensity toward uncertainty in patients with obsessive-compulsive disorder and in healthy subjects. Psychological Medicine,44, 2113–2124.

  47. Li, K., Zhang, H., Yang, Y., Zhu, J., Wang, B., Shi, Y., et al. (2019). Abnormal functional network of the thalamic subregions in adult patients with obsessive-compulsive disorder. Behavioural Brain Research,371, 111982.

  48. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews,31(2), 236–250.

    CAS  PubMed  Google Scholar 

  49. Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology,50(4), 381–425.

    CAS  PubMed  Google Scholar 

  50. Moody, T. D., Morfini, F., Cheng, G., Sheen, C., Tadayonnejad, R., Reggente, N., et al. (2017). Mechanisms of cognitive-behavioral therapy for obsessive-compulsive disorder involve robust and extensive increases in brain network connectivity. Translational Psychiatry,7(9), e1230.

  51. Moreira, P. S., Marques, P., Soriano-Mas, C., Magalhães, R., Sousa, N., Soares, J. M., & Morgado, P. (2017). The neural correlates of obsessive-compulsive disorder: a multimodal perspective. Translation Psychiatry,7, e1224.

    CAS  Google Scholar 

  52. Morton, S. M., & Bastian, A. J. (2004). Cerebellar control of balance and locomotion. The Neuroscientist : a Review Journal Bringing Neurobiology, Neurology and Psychiatry,10(3), 247–259.

  53. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage, 44(3), 893–905.

    PubMed  Google Scholar 

  54. Murphy, M. J. (2015). Attitudes concerning clinical molecular testing among dermatology trainees at a single institution. The American Journal of Dermatopathology, 37(7), 590. https://doi.org/10.1097/DAD.0000000000000136.

  55. Naaijen, J., Lythgoe, D. J., Amiri, H., Buitelaar, J. K., & Glennon, J. C. (2015). Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: a review of magnetic resonance spectroscopy studies. Neuroscience and Biobehavioral Reviews,52, 74–88.

    CAS  PubMed  Google Scholar 

  56. Nakao, T., Nakagawa, A., Nakatani, E., Nabeyama, M., Sanematsu, H., Yoshiura, T., et al. (2009). Working memory dysfunction in obsessive-compulsive disorder: a neuropsychological and functional MRI study. Journal of Psychiatric Research,43(8), 784–791.

  57. Nakao, T., Okada, K., & Kanba, S. (2014). Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry and Clinical Neurosciences,68(8), 587–605.

    PubMed  Google Scholar 

  58. Nalci, A., Rao, B. D., & Liu, T. T. (2017). Global signal regression acts as a temporal downweighting process in resting-state fMRI. Neuroimage, 152, 602–618.

    PubMed  Google Scholar 

  59. Noh, H. J., Tang, R., Flannick, J., O’Dushlaine, C., Swofford, R., Howrigan, D., et al. (2017). Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nature Communications,8, 774.

  60. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parmar, A., & Sarkar, S. (2016). Neuroimaging studies in obsessive compulsive disorder: a narrative review. Indian Journal of Psychological Medicine,38(5), 386–394.

    PubMed  PubMed Central  Google Scholar 

  62. Pelzer, E. A., Melzer, C., Timmermann, L., von Cramon, D. Y., & Tittgemeyer, M. (2017). Basal ganglia and cerebellar interconnectivity within the human thalamus. Brain Structure and Function,222(1), 381–392. https://doi.org/10.1007/s00429-016-1223-z

    Article  PubMed  Google Scholar 

  63. Peng, Z., Shi, F., Shi, C., Yang, Q., Chan, R. C., & Shen, D. (2014). Disrupted cortical network as a vulnerability marker for obsessive-compulsive disorder. Brain Structure and Function,219(5), 1801–1812.

    CAS  PubMed  Google Scholar 

  64. Posner, J., Marsh, R., Maia, T. V., Peterson, B. S., Gruber, A. . Bl. air, & Simpson, H. (2014). Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Human Brain Mapping,35, 2852–2860.

  65. Posner, J., Song, I., Lee, S., Rodriguez, C. I., Moore, H., Marsh, R., & Blair Simpson, H. (2017). Increased functional connectivity between the default mode and salience networks in unmedicated adults with obsessive-compulsive disorder. Human Brain Mapping,38, 678–687.

    PubMed  Google Scholar 

  66. Pujol, J., Blanco-Hinojo, L., Maciá, D., Alonso, P., Harrison, B. J., Martínez-Vilavella, G., et al. (2019). Mapping alterations of the functional structure of the cerebral cortex in obsessive-compulsive disorder. Cerebral Cortex. https://doi.org/10.1093/cercor/bhz008.

  67. Ravizza, S. M., Mccormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129(Pt 2), 306–320.

    PubMed  Google Scholar 

  68. Remijnse, P. L., Nielen, M. M., van Balkom, A. J., Hendriks, G. J., Hoogendijk, W. J., Uylings, H. B., et al. (2009). Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder. Psychological Medicine,39(9), 1503–1518.

  69. Roalf, D. R., & Gur, R. C. (2017). Functional brain imaging in neuropsychology over the past 25 years. Neuropsychology, 31(8), 954–971.

    PubMed  PubMed Central  Google Scholar 

  70. Rosenberg, D. R., Keshavan, M. S., Dick, E. L., Bagwell, W. W., MacMaster, F. P., & Birmaher, B. (1997). Decreased intrinsic functional connectivity of the salience network in drug-naïve patients with obsessive-compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1269–1283. https://doi.org/10.1016/s0278-5846(97)00163-2.

  71. Sale, M. V., Mattingley, J. B., Zalesky, A., & Cocchi, L. (2015). Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neuroscience and Biobehavioral Reviews,57, 187–198.

    PubMed  Google Scholar 

  72. Schlösser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., Hunsche, S., Gawehn, J., et al. (2003). Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. NeuroImage, 19(3), 751–763.

    PubMed  Google Scholar 

  73. Shatner, M., Havazelet-Heimer, G., Raz, A., & Bergman, H. (2002) Cognitive Decision Processes and Functional Characteristics of the Basal Ganglia Reward System. In the Basal Ganglia VI. Edited by Graybiel et al, Kluwer Academic/Plenum Publishers, 2002.

  74. Shin, D. J., Jung, W. H., He, Y., Wang, J., Shim, G., Byun, M. S., et al. (2014). The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biological Psychiatry,75(8), 606–614.

  75. Sladky, R., Höflich, A., Küblböck, M., Kraus, C., Baldinger, P., Moser, E., et al. (2015). Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for FMRI. Cerebral Cortex,25(4), 895–903.

  76. Stern, E. R., Welsh, R. C., Fitzgerald, K. D., Gehring, W. J., Lister, J. J., Himle, J. A., et al. (2011). Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive-compulsive disorder. Biological Psychiatry,69(6), 583–591.

  77. Szeszko, P. R., Ardekani, B. A., Ashtari, M., Malhotra, A. K., Robinson, D. G., Bilder, R. M., et al. (2005). White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Archives of General Psychiatry,62(7), 782–790.

  78. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage,15(1), 273–289.

  79. Vaghi, M. M., Vértes, P. E., Kitzbichler, M. G., Apergis-Schoute, A. M., van der Flier, F. E., Fineberg, N. A., et al. (2017). Specific Frontostriatal Circuits for Impaired Cognitive Flexibility and Goal-Directed Planning in Obsessive-Compulsive Disorder: Evidence From Resting-State Functional Connectivity. Biological Psychiatry,81(8), 708–717.

  80. van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Cath, D. C., van Balkom, A. J., van Hartskamp, J., et al. (2005). Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Archives of General Psychiatry,62(3), 301–309.

  81. Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience,10(11), 792–802.

    CAS  PubMed  Google Scholar 

  82. Wang, X., Li, F., Zheng, H., Wang, W., Zhang, W., Liu, Z., et al. (2015). Breakdown of the striatal-default mode network loop in schizophrenia. Schizophrenia Research,168(1–2), 366–372.

  83. Wang, Y., Bernanke, J., Peterson, B. S., McGrath, P., Stewart, J., Chen, Y., Lee, S., Wall, M., Bastidas, V., Hong, S., Rutherford, B. R., Hellerstein, D. J., & Posner, J. (2019). The association between antidepressant treatment and brain connectivity in two double-blind, placebo-controlled clinical trials: a treatment mechanism study. Lancet Psychiatry, 6, 667–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weidt, S., Lutz, J., Rufer, M., Delsignore, A., Jakob, N. J., Herwig, U., et al. (2016). Common and differential alterations of general emotion processing in obsessive-compulsive and social anxiety disorder. Psychological Medicine,46, 1427–1436.

  85. Welter, M. L., Burbaud, P., Fernandez-Vidal, S., Bardinet, E., Coste, J., Piallat, B., et al. (2011). Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Translation Psychiatry,1, e5.

  86. Wexler, B. E., & Goodman, W. K. (1991). Cerebral laterality, perception of emotion, and treatment response in obsessive-compulsive disorder. Biological Psychiatry,29, 900–908.

    CAS  PubMed  Google Scholar 

  87. Xu, T., Zhao, Q., Wang, P., Fan, Q., Chen, J., Zhang, H., et al. (2019). Altered resting-state cerebellar-cerebral functional connectivity in obsessive-compulsive disorder. Psychological Medicine,49(7), 1156–1165.

  88. Yilmaz, Z., Halvorsen, M., Bryois, J., Yu, D., Thornton, L. M., Zerwas, S., et al. (2018) Examination of the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder. Molecular Psychiatry. https://doi.org/10.1038/s41380-018-0115-4.

  89. Young, K. S., van der Velden, A. M., Craske, M. G., Pallesen, K. J., Fjorback, L., Roepstorff, A., et al. (2018). The impact of mindfulness-based interventions on brain activity: a systematic review of functional magnetic resonance imaging studies. Neuroscience and Biobehavioral Reviews,84, 424–433.

  90. Yuan, L., He, H., Zhang, H., & Zhong, J. (2016). Evaluating the Influence of Spatial Resampling for Motion Correction in Resting-State Functional MRI. Frontiers in Neuroscience,10, 591.

    PubMed  PubMed Central  Google Scholar 

  91. Zhong, Z., Yang, X., Cao, R., Li, P., Li, Z., Lv, L., & Zhang, D. (2019). Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: changes after cognitive behavioral therapy. Brain and Behavior,9(2), e01201.

    PubMed  PubMed Central  Google Scholar 

  92. Zhong, Z., Zhao, T., Luo, J., Guo, Z., Guo, M., Li, P., et al. (2014). Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry,51, 39–50.

Download references


This work was supported by grants from Heilongjiang Science and Technology Project (H2015063 to W.L), Harbin Medical University Project to W.L., the National Natural Science Foundation of China (81871052 to C.Z., 81801679), the Key Projects of the Natural Science Foundation of Tianjin, China (17JCZDJC35700 to C.Z.), the Tianjin Health Bureau Foundation (2014KR02 to C.Z.), Zhejiang Public Welfare Fund Project (LGF18H090002 to D.J.), and the key project of Wenzhou Science and Technology Bureau (ZS2017011 to X.L.).

Author information



Corresponding author

Correspondence to Chuanjun Zhuo.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of Harbin Medical University-Tianjin and Hospital-Xiamen Xianyue Hospital-Jining Medical University Joint Project.

Informed consent

Written informed consent form was obtained from all participants before data acquisition.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Hua, M., Qin, J. et al. Disrupted pathways from frontal-parietal cortex to basal ganglia and cerebellum in patients with unmedicated obsessive compulsive disorder as observed by whole-brain resting-state effective connectivity analysis – a small sample pilot study. Brain Imaging and Behavior (2020). https://doi.org/10.1007/s11682-020-00333-3

Download citation


  • Obsessive compulsive disorder
  • Unmedicated
  • Microcircuits
  • Functional disruptions