Skip to main content

An fMRI study of age-associated changes in basic visual discrimination

Abstract

Clinical neuropsychology lacks tests of basic visuoperceptual and spatial skills that have well-controlled administration and sophisticated measurement methods. Items from the Visual Assessment Battery (VAB), a simultaneous match-to-sample task, assessed visual discrimination in 40 healthy adults aged 51–91 during fMRI. The tasks were designed to isolate discrimination of either location, shape, or velocity, and they each had three levels of difficulty. The Location task uniquely activated the dorsal visual processing stream, the Shape task the ventral stream, and the Velocity task an area encompassing V5. Greater age was associated with greater neural recruitment, particularly in frontal areas. Behaviorally, greater age was associated with prolonged response times, but not reduced accuracy. Increased difficulty was associated with slower responses and reduced accuracy, regardless of age. Results validated the specialization of brain regions for spatial, perceptual, and movement discriminations and the use of the VAB to assess functioning localized to these regions. Visual discrimination ability does not change dramatically with age, but like many cognitive processes, performance slows. Anterior neural recruitment during visual discrimination increases with age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ansado, J., Monchi, O., Ennabil, N., Faure, S., & Joanette, Y. (2012). Load-dependent posterior-anterior shift in aging in complex visual selective attention situations. Brain Research, 1454, 14–22.

    CAS  Article  Google Scholar 

  2. Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527. https://doi.org/10.1162/089892904323057263.

    Article  PubMed  Google Scholar 

  3. Benton, A. L., Varney, N. R., & Hamsher, K. D. (1978). Visuospatial judgment. A clinical test. Archives of Neurology, 35(6), 364–367 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/655909.

    CAS  Article  Google Scholar 

  4. Benton, A. L., Sivan, A. B., Hamsher, K. D., Varney, N. R., & Spreen, O. (1983). Contribution to neuropsychological assessment. New York: Oxford University Press.

    Google Scholar 

  5. Berlingeri, M., Danelli, L., Bottini, G., Sberna, M., & Paulesu, E. (2013). Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Experimental Brain Research, 224(3), 393–410. https://doi.org/10.1007/s00221-012-3319-x.

    Article  PubMed  Google Scholar 

  6. Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189.

    CAS  Article  Google Scholar 

  7. Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., Wall, M., Sloan, R. P., & Small, S. A. (2014). Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience, 17(12), 1798–1803. https://doi.org/10.1038/nn.3850.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15028641.

    Article  Google Scholar 

  9. Cattell, R. B. (1987). Intelligence: Its structure, growth and action. Amterdam: North-Holland.

    Google Scholar 

  10. Chapman, H., Gavrilescu, M., Wang, H., Kean, M., Egan, G., & Castiello, U. (2002). Posterior parietal cortex control of reach-to-grasp movements in humans. The European Journal of Neuroscience, 15(12), 2037–2042.

    Article  Google Scholar 

  11. Cushman, L. A., Stein, K., & Duffy, C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71(12), 888–895. https://doi.org/10.1212/01.wnl.0000326262.67613.fe.

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Bruyn, B., & Orban, G. A. (1988). Human velocity and direction discrimination measured with random dot patterns. Vision Research, 28(12), 1323–1335 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3256150.

    Article  Google Scholar 

  13. Devlin, J. T., & Price, C. J. (2007). Perirhinal contributions to human visual perception. Current Biology, 17(17), 1484–1488.

    CAS  Article  Google Scholar 

  14. DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neurosciences, 11(5), 219–226 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2471327.

    CAS  Article  Google Scholar 

  15. Dwolatzky, T., Whitehead, V., Doniger, G. M., Simon, E. S., Schweiger, A., Jaffe, D., & Chertkow, H. (2004). Validity of the mindstreams computerized cognitive battery for mild cognitive impairment. Journal of Molecular Neuroscience, 24(1), 33–44. https://doi.org/10.1385/jmn:24:1:033.

  16. Ellison, A., & Cowey, A. (2006). TMS can reveal contrasting functions of the dorsal and ventral visual processing streams. Experimental Brain Research, 175(4), 618–625. https://doi.org/10.1007/s00221-006-0582-8.

    Article  PubMed  Google Scholar 

  17. Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience, 14(3 Pt 2), 1450–1462 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8126548.

    CAS  Article  Google Scholar 

  18. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage, 8, 409–425.

    CAS  Article  Google Scholar 

  19. Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews. Neuroscience, 5(2), 87–96. https://doi.org/10.1038/nrn1323.

    CAS  Article  PubMed  Google Scholar 

  20. Jackson, G. R., & Owsley, C. (2003). Visual dysfunction, neurodegenerative diseases, and aging. Neurologic Clinics, 21(3), 709–728 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13677819.

    Article  Google Scholar 

  21. Jiang, X., Bradley, E., Rini, R. A., Zeffiro, T., Vanmeter, J., & Riesenhuber, M. (2007). Categorization training results in shape- and category-selective human neural plasticity. Neuron, 53(6), 891–903. https://doi.org/10.1016/j.neuron.2007.02.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kline, D. W., Kline, T. J. B., Fozard, J. L., Kosnik, W., Schieber, F., & Sekuler, R. (1992). Vision, aging, and driving: The problems of older drivers. Journal of Gerontology: Psychological Sciences, 47(1), 27–34.

    Article  Google Scholar 

  23. Kolster, H., Peeters, R., & Orban, G. A. (2010). The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. The Journal of Neuroscience, 30(29), 9801–9820.

    CAS  Article  Google Scholar 

  24. Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., & Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1, 80–84.

    CAS  Article  Google Scholar 

  25. Kosnik, W., Winslow, L., Kline, D., Rasinski, K., & Sekuler, R. (1988). Visual changes in daily life throughout adulthood. Journal of Gerontology: Psychological Sciences, 43(3), 63–70.

    Article  Google Scholar 

  26. KyberVision Japan LLC. (2006-2016). Psykinematix, Retrieved from http://psykinematix.com/index.html.

  27. Lamb, D. G., Correa, L. N., Seider, T. S., Mosquera, D. M., Rodriguez, J. A., Salazar, L., et al. (2016). The aging brain: Movement speed and spatial control. Brain and Cognition, 109, 105–111.

    Article  Google Scholar 

  28. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3283936.

    CAS  Article  Google Scholar 

  29. Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 70–74. https://doi.org/10.1111/j.1467-8721.2007.00478.x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R., White, L. E., & Huettel, S. A. (2007). Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiology of Aging, 28(3), 459–476. https://doi.org/10.1016/j.neurobiolaging.2006.01.005.

    Article  PubMed  Google Scholar 

  31. Madden, D. J., Parks, E. L., Tallman, C. W., Boylan, M. A., Hoagey, D. A., Cocjin, S. B., et al. (2017). Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age. Human Brain Mapping, 38, 2128–2149.

    Article  Google Scholar 

  32. Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., Meyer-Lindenberg, A., Goldberg, T. E., Callicott, J. H., & Weinberger, D. R. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392(1–2), 32–37. https://doi.org/10.1016/j.neulet.2005.09.025.

    CAS  Article  PubMed  Google Scholar 

  33. Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6, 414–417.

    Article  Google Scholar 

  34. Mishra, J., Rolle, C., & Gazzaley, A. (2015). Neural plasticity underlying visual perceptual learning in aging. Brain Research, 1612, 140–151. https://doi.org/10.1016/j.brainres.2014.09.009.

    CAS  Article  PubMed  Google Scholar 

  35. Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. Neuroimage, 62(2), 811–815. https://doi.org/10.1016/j.neuroimage.2012.04.014.

    Article  PubMed  Google Scholar 

  36. Orban, G. A., Fize, D., Peuskens, H., Denys, K., Nelissen, K., Sunaert, S., et al. (2003). Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia, 41(13), 1757–1768 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14527539.

    Article  Google Scholar 

  37. Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–1622. https://doi.org/10.1016/j.visres.2010.10.020.

    Article  PubMed  Google Scholar 

  38. Pitcher, D., Charles, L., Devlin, J. T., Walsh, V., & Duchaine, B. (2009). Triple dissociation of faces, bodies, and objects in extrastriate cortex. Current Biology, 19(4), 319–324. https://doi.org/10.1016/j.cub.2009.01.007.

    CAS  Article  PubMed  Google Scholar 

  39. Possin, K. L. (2010). Visual spatial cognition in neurodegenerative disease. Neurocase, 16(6), 466–487. https://doi.org/10.1080/13554791003730600.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.

    Article  Google Scholar 

  41. Roijendijk, L., Farquhar, J., van Gerven, M., Jensen, O., & Gielen, S. (2013). Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing. PLoS One, 8(12), e80489. https://doi.org/10.1371/journal.pone.0080489.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Ryan, L., Cardoza, J. A., Barense, M. D., Kawa, K. H., Wallentin-Flores, J., Arnold, W. T., & Alexander, G. E. (2012). Age-related impairment in a complex object discrimination task that engages perirhinal cortex. Hippocampus, 22(10), 1978–1989. https://doi.org/10.1002/hipo.22069.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.

    CAS  Article  Google Scholar 

  44. Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54, 35–54.

    CAS  Article  Google Scholar 

  45. Schaie, K. W. (1996). Intellectual development in adulthood: The Seattle longitudinal study. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  46. Shipp, S., & Zeki, S. (1985). Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature, 315(6017), 322–325 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2987702.

    CAS  Article  Google Scholar 

  47. Silvanto, J., Schwarzkopf, D. S., Gilaie-Dotan, S., & Rees, G. (2010). Differing causal roles for lateral occipital cortex and occipital face area in invariant shape recognition. The European Journal of Neuroscience, 32(1), 165–171. https://doi.org/10.1111/j.1460-9568.2010.07278.x.

    CAS  Article  PubMed  Google Scholar 

  48. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315. https://doi.org/10.1038/nn1008.

    CAS  Article  PubMed  Google Scholar 

  49. Swearer, J. M., & Kane, K. J. (1996). Behavioral slowing with age: boundary conditions of the generalized slowing model. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 51(4), P189–P200 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8673640.

    CAS  Article  Google Scholar 

  50. Talsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: Effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62(2), 249–261. https://doi.org/10.1016/j.ijpsycho.2006.04.006.

    Article  PubMed  Google Scholar 

  51. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: The MIT Press.

    Google Scholar 

  52. Van Zandt, T. (2002). Analysis of response time distributions. In J. Wixted (Ed.), Stevens' handbook of experimental psychology (4th ed.). New York: John Wiley and Sons, Inc..

    Google Scholar 

  53. Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage, 91, 412–419. https://doi.org/10.1016/j.neuroimage.2013.12.058.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zachariou, V., Klatzky, R., & Mehrmann, M. (2013). Ventral and dorsal visual stream contributions to the perception of object shape and object location. Journal of Cognitive Neuroscience, 26(1), 189–209.

    Article  Google Scholar 

  55. Zanon, M., Busan, P., Monti, F., Pizzolato, G., & Battaglini, P. P. (2010). Cortical connections between dorsal and ventral visual streams in humans: Evidence by TMS/EEG co-registration. Brain Topography, 22(4), 307–317. https://doi.org/10.1007/s10548-009-0103-8.

    Article  PubMed  Google Scholar 

  56. Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641–649 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2002358.

    CAS  Article  Google Scholar 

Download references

Funding

Research was supported by the National Institute of Health (Grant 5 T32 AG 020499-12), the McKnight Brain Research Foundation, and CAM-CTRP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Talia R. Seider.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4.82 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seider, T.R., Porges, E.C., Woods, A.J. et al. An fMRI study of age-associated changes in basic visual discrimination. Brain Imaging and Behavior 15, 917–929 (2021). https://doi.org/10.1007/s11682-020-00301-x

Download citation

Keywords

  • Visual perception/discrimination
  • fMRI
  • Velocity
  • Location
  • Shape
  • Age