Skip to main content

Advertisement

Log in

Diagnosis of early Alzheimer’s disease based on dynamic high order networks

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Machine learning methods have been widely used for early diagnosis of Alzheimer’s disease (AD) via functional connectivity networks (FCNs) analysis from neuroimaging data. The conventional low-order FCNs are obtained by time-series correlation of the whole brain based on resting-state functional magnetic resonance imaging (R-fMRI). However, FCNs overlook inter-region interactions, which limits application to brain disease diagnosis. To overcome this drawback, we develop a novel framework to exploit the high-level dynamic interactions among brain regions for early AD diagnosis. Specifically, a sliding window approach is employed to generate some R-fMRI sub-series. The correlations among these sub-series are then used to construct a series of dynamic FCNs. High-order FCNs based on the topographical similarity between each pair of the dynamic FCNs are then constructed. Afterward, a local weight clustering method is used to extract effective features of the network, and the least absolute shrinkage and selection operation method is chosen for feature selection. A support vector machine is employed for classification, and the dynamic high-order network approach is evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our experimental results demonstrate that the proposed approach not only achieves promising results for AD classification, but also successfully recognizes disease-related biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676.

    PubMed  Google Scholar 

  • Alzheimer, A. (2018). 2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 14(3), 367–429.

    Google Scholar 

  • Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12, 512–523.

    PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    CAS  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    CAS  PubMed  Google Scholar 

  • Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., & Cercignani, M. (2015). Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI. NeuroImage, 112, 232–243.

    PubMed  Google Scholar 

  • Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50, 81–98.

    PubMed  Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27–65.

    Google Scholar 

  • Chen, G., Ward, B. D., Xie, C., Li, W., Wu, Z., et al. (2011). Classification of Alzheimer disease, mild cognitive impairment, and Normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology, 259(1), 213–221.

    PubMed  PubMed Central  Google Scholar 

  • Chen, X., Zhang, H., Gao, Y., Wee, C. Y., Li, G., & Shen, D. (2016). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296.

    PubMed  PubMed Central  Google Scholar 

  • Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., et al. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 5, 298–308.

    CAS  Google Scholar 

  • De Vos, F., Koini, M., Schouten, T. M., Seiler, S., Van der Grond, J., et al. (2018). A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease. NeuroImage, 167, 62–72.

    PubMed  Google Scholar 

  • Echavarri, C., Aalten, P., Uylings, H. B., Jacobs, H., Visser, P. J., et al. (2011). Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. Brain Structure and Function, 215, 265–271.

    CAS  PubMed  Google Scholar 

  • Fan, R.-E., Chen, P.-H., & Lin, C.-J. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1889–1918.

    Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36.

    PubMed  Google Scholar 

  • Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 101(13), 4637–4642.

    CAS  Google Scholar 

  • Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109, 10661–10668.

    CAS  Google Scholar 

  • Huettel SA, Song AW, McCarthy G. (2004). Functional magnetic resonance imaging. Sinauer Associates Sunderland.

    Google Scholar 

  • Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378.

    PubMed  Google Scholar 

  • Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage, 39(4), 1666–1681.

    PubMed  Google Scholar 

  • Jagust, W. J., Landau, S. M., Koeppe, R. A., Reiman, E. M., Chen, K., et al. (2015). The Alzheimer's disease neuroimaging initiative 2 PET core: 2015. Alzheimer's & Dementia, 11(7), 757–771.

    Google Scholar 

  • Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., et al. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimer's & Dementia, 14(4), 483–491.

    Google Scholar 

  • Li C, Fang C, Cabrerizo M, Barreto A, Andrian J, et al. (2017) Pattern analysis of the interaction of regional amyloid load, cortical thickness and APOE genotype in the progression of Alzheimer's disease. IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2017: 2171–2176. IEEE.

  • Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach. NeuroImage, 101, 531–546.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J., Ji, S., & Ye, J. (2009). SLEP: sparse learning with efficient projections. Arizona State University, 6 (191), 7.

  • Lui, S., Wu, Q., Qiu, L., Yang, X., Kuang, W., Chan, R. C., Huang, X., Kemp, G. J., Mechelli, A., & Gong, Q. (2011). Resting-state functional connectivity in treatment-resistant depression. American Journal of Psychiatry, 168(6), 642–648.

    Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., et al. (2005). The Alzheimer's disease neuroimaging initiative. Neuroimaging Clinics, 15(4), 869–877.

    PubMed  Google Scholar 

  • Niethammer, M., Feigin, A., & Eidelberg, D. (2012). Functional neuroimaging in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine. https://doi.org/10.1101/cshperspect.a009274.

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868–9872.

    CAS  Google Scholar 

  • Qi, S., Meesters, S., Nicolay, K., ter Haar Romeny, B. M., & Ossenblok, P. (2015). The influence of construction methodology on structural brain network measures: A review. Journal of Neuroscience Methods, 253, 170–182.

    PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.

    PubMed  Google Scholar 

  • Shi, J., Zheng, X., Li, Y., Zhang, Q., & Ying, S. (2017). Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics, 22(1), 173–183.

    PubMed  Google Scholar 

  • Shi, J., Xue, Z., Dai, Y., Peng, B., Dong, Y., et al. (2018). Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 66(8), 2362–2371.

    PubMed  Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational Biology, 4(6), e1000100.

    PubMed  PubMed Central  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.

    Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical Parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    CAS  PubMed  Google Scholar 

  • van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.

    PubMed  Google Scholar 

  • Visser, P., & Tijms, B. (2017). Brain amyloid pathology and cognitive function: Alzheimer disease without dementia? JAMA, 317(32), 2285–2287.

    PubMed  Google Scholar 

  • Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16–31.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wang, Q., Peng, J., Nie, D., Zhao, F., et al. (2017). Multi-task diagnosis for autism spectrum disorders using multi-modality features: A multi-center study. Human Brain Mapping, 38(6), 3081–3097.

    PubMed  PubMed Central  Google Scholar 

  • Weng, S.-J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research, 1313, 202–214.

    CAS  PubMed  Google Scholar 

  • Yaesoubi, M., Allen, E. A., Miller, R. L., & Calhoun, V. D. (2015). Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. Neuroimage, 120, 133–142.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Zhang, H., Chen, X., Lee, S.-W., & Shen, D. (2017). Hybrid high-order functional connectivity networks using resting-state functional MRI for mild cognitive impairment diagnosis. Scientific Reports, 7(1), 6530–6544.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Zun, Q., Hao, X., Shao, W., Wang, M., et al. (2018). Intelligent analysis of brain images. SCIENTIA SINICA Informationis, 48, 589–602.

    Google Scholar 

  • Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J. 2018. Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters: https://doi.org/10.1016/j.patrec.2018.06.029.

  • Zhou, T., Liu, M., Thung, K. H., & Shen, D. (2019a). Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data. IEEE Transactions on Medical Imaging DOI. https://doi.org/10.1109/TMI.2019.2913158.

  • Zhou, T., Thung, K. H., Zhu, X., & Shen, D. (2019b). Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Human Brain Mapping, 40(3), 1001–1016.

    PubMed  Google Scholar 

  • Zhu, X., Zhang, S., Hu, R., He, W., Lei, C., & Zhu, P. (2018a). One-step multi-view spectral clustering. IEEE Transactions on Knowledge Data Engineering Human Brain Mapping, 40(3), 1001–1016.

    Google Scholar 

  • Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., & Fang, Y. (2018b). Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge Data Engineering, 31(8), 1532–1543.

    Google Scholar 

Download references

Acknowledgments

This work was supported partly by National Natural Science Foundation of China (Nos.61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ20170413152804728,JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818094109846).

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. HoffmannLa Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianfu Wang or Shuqiang Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article contains no studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, B., Yu, S., Zhao, X. et al. Diagnosis of early Alzheimer’s disease based on dynamic high order networks. Brain Imaging and Behavior 15, 276–287 (2021). https://doi.org/10.1007/s11682-019-00255-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00255-9

Keywords

Navigation