Skip to main content

Advertisement

Log in

Modeling motor task activation from resting-state fMRI using machine learning in individual subjects

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Suppl 1), S148.

    Article  Google Scholar 

  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  Google Scholar 

  • Bizzi, A., Blasi, V., Falini, A., Ferroli, P., Cadioli, M., Danesi, U., et al. (2008). Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology, 248(2), 579–589.

    Article  Google Scholar 

  • Blatow, M., Reinhardt, J., Riffel, K., Nennig, E., Wengenroth, M., & Stippich, C. (2011). Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla. Journal of Magnetic Resonance Imaging, 34(2), 429–437.

    Article  Google Scholar 

  • Branco, P., Seixas, D., Deprez, S., Kovacs, S., Peeters, R., Castro, S. L., & Sunaert, S. (2016). Resting-state functional magnetic resonance imaging for language preoperative planning. Frontiers in Human Neuroscience, 10, 11.

    Article  Google Scholar 

  • Cohen, A. D., Chen, Z., Parker Jones, O., Niu, C., & Wang, Y. (2019). Regression-based machine-learning approaches to predict task activation using resting-state fMRI. Human Brain Mapping. https://doi.org/10.1002/hbm.24841.

  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.

    Article  CAS  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853.

    Article  CAS  Google Scholar 

  • DeAngelis, L. M. (2001). Brain tumors. New England Journal of Medicine, 344(2), 114–123.

    Article  CAS  Google Scholar 

  • Duffau, H. (2005). Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. The Lancet Neurology, 4(8), 476–486.

    Article  Google Scholar 

  • Field, A. S., Yen, Y.-F., Burdette, J. H., & Elster, A. D. (2000). False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. American Journal of Neuroradiology, 21(8), 1388–1396.

    CAS  PubMed  Google Scholar 

  • Giussani, C., Roux, F.-E., Ojemann, J., Sganzerla, E. P., Pirillo, D., & Papagno, C. (2010). Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery, 66(1), 113–120.

    Article  Google Scholar 

  • Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., Krägeloh-Mann, I., & Cioni, G. (2007). Brain representation of active and passive hand movements in children. Pediatric Research, 61, 485–490. https://doi.org/10.1203/pdr.0b013e3180332c2e.

    Article  PubMed  Google Scholar 

  • Johnstone, T., Ores Walsh, K. S., Greischar, L. L., Alexander, A. L., Fox, A. S., Davidson, R. J., & Oakes, T. R. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27(10), 779–788.

    Article  Google Scholar 

  • Jones, O. P., Voets, N., Adcock, J., Stacey, R., & Jbabdi, S. (2017). Resting connectivity predicts task activation in pre-surgical populations. NeuroImage: Clinical, 13, 378–385.

    Article  Google Scholar 

  • Kelly Jr., R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., et al. (2010). Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189(2), 233–245.

    Article  Google Scholar 

  • Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao, F. (2016). How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean–Chinese–English trilinguals. Neuroimage, 129, 25–39.

    Article  Google Scholar 

  • Kocak, M., Ulmer, J. L., Sahin Ugurel, M., Gaggl, W., & Prost, R. W. (2009). Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging—initial results. Radiology, 251(2), 485–492.

    Article  Google Scholar 

  • Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872.

    Article  CAS  Google Scholar 

  • Liljeström, M., Stevenson, C., Kujala, J., & Salmelin, R. (2015). Task-and stimulus-related cortical networks in language production: exploring similarity of MEG-and fMRI-derived functional connectivity. NeuroImage, 120, 75–87.

    Article  Google Scholar 

  • McNeill, K. A. (2016). Epidemiology of brain tumors. Neurologic Clinics, 34(4), 981–998.

    Article  Google Scholar 

  • Mitchell, T. J., Hacker, C. D., Breshears, J. D., Szrama, N. P., Sharma, M., Bundy, D. T., et al. (2013). A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery, 73(6), 969–983.

    Article  Google Scholar 

  • Niu, C., Zhang, M., Min, Z., Rana, N., Zhang, Q., Liu, X., Li, M., & Lin, P. (2014). Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study. PLoS One, 9(5), e96850.

    Article  Google Scholar 

  • Niu, C., Liu, X., Yang, Y., Zhang, K., Min, Z., Wang, M., et al. (2016). Assessing region of interest schemes for the corticospinal tract in patients with brain tumors. Medicine, 95(12).

  • Qiu, T.-M., Yan, C.-G., Tang, W.-J., Wu, J.-S., Zhuang, D.-X., Yao, C.-J., et al. (2014). Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochirurgica, 156(12), 2295–2302.

    Article  Google Scholar 

  • Roland, J. L., Griffin, N., Hacker, C. D., Vellimana, A. K., Akbari, S. H., Shimony, J. S., Smyth, M. D., Leuthardt, E. C., & Limbrick, D. D. (2017). Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience. Journal of Neurosurgery: Pediatrics, 20(6), 583–590.

    PubMed  Google Scholar 

  • Rosazza, C., & Minati, L. (2011). Resting-state brain networks: literature review and clinical applications. Neurological Sciences, 32(5), 773–785.

    Article  Google Scholar 

  • Rosazza, C., Minati, L., Ghielmetti, F., Mandelli, M., & Bruzzone, M. (2012). Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest− based methods. American Journal of Neuroradiology, 33(1), 180–187.

    Article  CAS  Google Scholar 

  • Rosazza, C., Aquino, D., D’Incerti, L., Cordella, R., Andronache, A., Zacà, D., et al. (2014). Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI. PLoS One, 9(6), e98860.

    Article  Google Scholar 

  • Roux, F.-E., Boulanouar, K., Lotterie, J.-A., Mejdoubi, M., LeSage, J. P., & Berry, I. (2003). Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery, 52(6), 1335–1347.

    Article  Google Scholar 

  • Sanai, N., & Berger, M. S. (2018). Surgical oncology for gliomas: the state of the art. Nature Reviews Clinical Oncology, 15(2), 112–125.

    Article  Google Scholar 

  • Seitz, R. J., Roland, P. E., Bohm, C., Greitz, T., & Stone-Elander, S. (1991). Somatosensory discrimination of shape: tactile exploration and cerebral activation. European Journal of Neuroscience, 3(6), 481–492.

    Article  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–S219.

    Article  Google Scholar 

  • Tavor, I., Jones, O. P., Mars, R., Smith, S., Behrens, T., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220.

    Article  CAS  Google Scholar 

  • Tharin, S., & Golby, A. (2007). Functional brain mapping and its applications to neurosurgery. Operative Neurosurgery, 60(suppl_4) ONS-185-ONS-202.

  • Tombari, D., Loubinoux, I., Pariente, J., Gerdelat, A., Albucher, J.-F., Tardy, J., Cassol, E., & Chollet, F. (2004). A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage, 23(3), 827–839.

    Article  Google Scholar 

  • Tyndall, A. J., Reinhardt, J., Tronnier, V., Mariani, L., & Stippich, C. (2017). Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. European Radiology, 27(1), 267–278.

    Article  Google Scholar 

  • Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2006). Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabilitation and Neural Repair, 20(3), 398–405.

    Article  Google Scholar 

  • Weiller, C., Jüptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., et al. (1996). Brain representation of active and passive movements. NeuroImage, 4(2), 105–110.

    Article  CAS  Google Scholar 

  • Xu, Y., Tong, Y., Liu, S., Chow, H. M., AbdulSabur, N. Y., Mattay, G. S., & Braun, A. R. (2014). Denoising the speaking brain: Toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. NeuroImage, 103, 33–47.

    Article  Google Scholar 

  • Yuan, K., Qin, W., Dong, M., Liu, J., Sun, J., Liu, P., et al. (2010). Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neuroscience Letters, 482(2), 101–105.

    Article  CAS  Google Scholar 

  • Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Operative Neurosurgery, 65(suppl_6), ons226–ons236.

    Article  Google Scholar 

  • Zuo, X.-N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., & Milham, M. P. (2010). Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage, 49(3), 2163–2177.

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges support of the China Scholarship Council (CSC).

Funding

This study was partially supported by the National Natural Science Foundation of China (Project No.81871331, to M.Z.) and the Key Research and Development Program of Shaanxi Province (2018SF-113, to C.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wang or Ming Zhang.

Ethics declarations

Conflict of interest

Chen Niu, Alexander D. Cohen, Xin Wen, Ziyi Chen, Pan Lin, Xin Liu, Bjoern H. Menze, Benedikt Wiestler, Yang Wang, Ming Zhang declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study were approved by the Human Research Ethics Committee of the Xi’an Jiaotong University, and were conducted in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Cohen, A.D., Wen, X. et al. Modeling motor task activation from resting-state fMRI using machine learning in individual subjects. Brain Imaging and Behavior 15, 122–132 (2021). https://doi.org/10.1007/s11682-019-00239-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00239-9

Keywords

Navigation