Skip to main content
Log in

Resting-state causal connectivity of the bed nucleus of the stria terminalis in panic disorder

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Panic disorder (PD) is associated with anticipatory anxiety, a sustained threat response that appears to be related to the bed nucleus of the stria terminalis (BNST). Individuals with panic disorder may demonstrate significant differences in causal connectivity of the BNST in comparison to healthy controls. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant causal connectivity of the BNST in PD patients. 19 PD patients and 18 healthy controls (HC) matched for gender, age and education were included. Granger causality analysis (GCA) utilizing the BNST as a seed region was used to investigate changes in directional connectivity. Relative to healthy controls, PD patients displayed abnormal directional connectivity of the BNST including enhanced causal connectivity between the left parahippocampal gyrus and left BNST, the right insula and the right BNST, the left BNST and the right dorsolateral prefrontal cortex (dlPFC) and right BNST to the left and right dlPFC. Furthermore, PD patients displayed weakened causal connectivity between the right dlPFC and the left BNST, the left dlPFC and the right BNST, the left BNST and the left dorsomedial prefrontal cortex (dmPFC), right insula, right fusiform, and right BNST to the right insula. The results suggest that PD strongly correlates with increased causal connectivity between emotional processing regions and the BNST and enhanced causal connectivity between the BNST and cognitive control regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PD:

panic disorder

BNST:

bed nucleus of the stria terminalis

fMRI:

functional magnetic resonance imaging

HC:

healthy controls

GCA:

Granger causality analysis

dlPFC:

dorsolateral prefrontal cortex

dmPFC:

dorsomedial prefrontal cortex

PFC:

prefrontal cortex

vmPFC:

ventromedial prefrontal cortex

ACC:

anterior cingulate cortex

PTSD:

post-traumatic stress disorder

CeA:

central amygdala

mPFC:

medial prefrontal cortex

vHPC:

ventral hippocampus

DSM-IV:

Diagnostic and Statistical Manual of Mental Disorders

MINI:

International Neuropsychiatric Interview

MPRAGE:

magnetization-prepared rapid acquisition gradient echo

EPI:

echo planar imaging

TR:

repetition time

TE:

echo time

FA:

flip angle

FOV:

field of view

HAMA:

Hamilton Anxiety Rating Scale

MNI:

Montreal Neurological Institute

PreCG:

precentral gyrus

ALFF:

amplitude of low frequency fluctuation

ReHo:

regional homogeneity

References

  • Adhikari, A. (2014). Distributed circuits underlying anxiety. Frontiers in Behavioral Neuroscience, 8(8), 112.

    PubMed  PubMed Central  Google Scholar 

  • Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18(2), 166–172.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez, R. P., Chen, G., Bodurka, J., Kaplan, R., & Grillon, C. (2011). Phasic and sustained fear in humans elicits distinct patterns of brain activity. Neuroimage, 55(1), 389–400.

    PubMed  Google Scholar 

  • Association, A. P. (2000). Diagnostic and statistical manual of mental disorders: 4th ed. American Psychiatric Association.

  • Association, A. P. (2013). Diagnostic and statistical manual of mental disorders: 5th ed. American Psychiatric Association.

  • Avery, S. N., Clauss, J. A., Winder, D. G., Woodward, N., Heckers, S., & Blackford, J. U. (2014). Bnst neurocircuitry in humans. Neuroimage, 91(2), 311–323.

    PubMed  PubMed Central  Google Scholar 

  • Baur, V., Hänggi, J., Langer, N., & JäNcke, L. (2013). Resting-state functional and structural connectivity within an insula–amygdala route specifically index state and trait anxiety. Biological Psychiatry, 73(1), 85–92.

    PubMed  Google Scholar 

  • Brinkmann, L., Buff, C., Feldker, K., Tupak, S. V., & Straube, T. (2017a). Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder. Psychological Medicine, 47(15), 1–14.

    Google Scholar 

  • Brinkmann, L., Buff, C., Neumeister, P., Tupak, S. V., Becker, M. P., Herrmann, M. J., et al. (2017b). Dissociation between amygdala and bed nucleus of the stria terminalis during threat anticipation in female post-traumatic stress disorder patients. Human Brain Mapping, 38(4), 2190–2205.

    PubMed  PubMed Central  Google Scholar 

  • Brinkmann, L., Poller, H., Herrmann, M. J., Miltner, W., & Straube, T. (2017c). Initial and sustained brain responses to threat anticipation in blood-injection-injury phobia. NeuroImage: Clinical, 13, 320–329.

    Google Scholar 

  • Buff, C., Brinkmann, L., Bruchmann, M., Becker, M. P. I., Tupak, S., Herrmann, M. J., & Straube, T. (2017). Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder. Social Cognitive and Affective Neuroscience, 12, 1766–1774.

    PubMed  PubMed Central  Google Scholar 

  • Bystritsky, A., Pontillo, D., Powers, M., Sabb, F. W., Craske, M. G., & Bookheimer, S. Y. (2001). Functional mri changes during panic anticipation and imagery exposure. Neuroreport, 12(18), 3953–3957.

    CAS  PubMed  Google Scholar 

  • Chen, H., Yang, Q., Liao, W., Gong, Q., & Shen, S. (2009). Evaluation of the effective connectivity of supplementary motor areas during motor imagery using granger causality mapping. Neuroimage, 47(4), 1844–1853.

    PubMed  Google Scholar 

  • Chen, Y. C., Xia, W., Chen, H., Feng, Y., Xu, J. J., Gu, J. P., Salvi, R., & Yin, X. (2017). Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Human Brain Mapping, 38(5), 2384–2397.

    PubMed  PubMed Central  Google Scholar 

  • Chua, P. (1999). A functional anatomy of anticipatory anxiety. NeuroImage, 9(6), 563–571.

    CAS  PubMed  Google Scholar 

  • Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.

    CAS  PubMed  Google Scholar 

  • Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35(1), 105–135.

    PubMed  Google Scholar 

  • Davis, M. (1998). Are different parts of the extended amygdala involved in fear versus anxiety? Biological Psychiatry, 44(12), 1239–1247.

    CAS  PubMed  Google Scholar 

  • Davis, & Michael. (2006). Neural systems involved in fear and anxiety measured with fear-potentiated startle. American Psychologist, 61(8), 741–756.

    Google Scholar 

  • De Cort, K., Schroijen, M., Hurlemann, R., Claassen, S., Hoogenhout, J., Omer, V. D. B., et al. (2016). Modeling the development of panic disorder with interoceptive conditioning. European Neuropsychopharmacology, 27, 59–69.

    PubMed  Google Scholar 

  • Dong, H. W., Petrovich, G. D., & Swanson, L. W. (2001a). Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Research Reviews, 38(1), 192–246.

    CAS  PubMed  Google Scholar 

  • Dong, H. W., Petrovich, G. D., Watts, A. G., & Swanson, L. W. (2001b). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. Journal of Comparative Neurology, 436(4), 430–455.

    CAS  Google Scholar 

  • Dong, H. W., & Swanson, L. W. (2004a). Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. Journal of Comparative Neurology, 468(2), 277–298.

    Google Scholar 

  • Dong, H. W., & Swanson, L. W. (2006a). Projections from bed nuclei of the stria terminalis, magnocellular nucleus: Implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. Journal of Comparative Neurology, 494(1), 108–141.

    Google Scholar 

  • Dong, H., & Swanson, L. W. (2006b). Projections from bed nuclei of the stria terminalis, anteromedial area: Cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. Journal of Comparative Neurology, 494(1), 142–178.

    Google Scholar 

  • Dong, H., & Swanson, L. W. (2006c). Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: Implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. Journal of Comparative Neurology, 494(1), 75–107.

    Google Scholar 

  • Drevets, W. C., & Raichle, M. E. (1998). Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implication for interactions between emotion and cognition. Cognitive & Emotion, 12, 353–385.

    Google Scholar 

  • Ferri, J., Schmidt, J., Hajcak, G., & Canli, T. (2016). Emotion regulation and amygdala-precuneus connectivity: Focusing on attentional deployment. Cognitive, Affective, & Behavioral Neuroscience, 16(6), 991–1002.

    Google Scholar 

  • Goebel, R., Roebroeck, A., Kim, D. S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magnetic Resonance Imaging, 21(10), 1251–1261.

    PubMed  Google Scholar 

  • Grupe, D. W., Oathes, D. J., & Nitschke, J. B. (2013). Dissecting the anticipation of aversion reveals dissociable neural networks. Cerebral Cortex, 23(8), 1874–1883.

    PubMed  Google Scholar 

  • Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting-state fmri time-series data. Molecular Psychiatry, 16(7), 763–772.

    CAS  PubMed  Google Scholar 

  • Hasler, G., Fromm, S., Alvarez, R. P., Luckenbaugh, D. A., Drevets, W. C., & Grillon, C. (2007). Cerebral blood flow in immediate and sustained anxiety. Journal of Neuroscience, 27(23), 6313–6319.

    CAS  PubMed  Google Scholar 

  • Held-Poschardt, D., Sterzer, P., Schlagenhauf, F., Pehrs, C., Wittmann, A., Stoy, M., Hägele, C., Knutson, B., Heinz, A., & Ströhle, A. (2018). Reward and loss anticipation in panic disorder: An fmri study. Psychiatry Research: Neuroimaging, 271, 111–117.

    PubMed  Google Scholar 

  • Holstege, G. (1985). Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Experimental Brain Research, 58(2), 379–391.

    CAS  PubMed  Google Scholar 

  • Jianping, Q., Anning, L., Chongfeng, C., Zhishun, W., Jiande, S., & Guangrun, X. (2017). Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Frontiers in Human Neuroscience, 11, 626.

    Google Scholar 

  • Kansisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.

    Google Scholar 

  • Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N., & Whalen, P. J. (2011). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223(2), 403–410.

    PubMed  PubMed Central  Google Scholar 

  • Lai, C. H., & Wu, Y. T. (2012). Patterns of fractional amplitude of low-frequency oscillations in occipito-striato-thalamic regions of first-episode drugnaïve panic disorder. Journal of Affective Disorders, 142(1-3), 180–185.

  • Lai, C. H., & Wu, Y. T. (2013). Decreased regional homogeneity in lingual gyrus, increased regional homogeneity in cuneus and correlations with panic symptom severity of first-episode, medication-naïve and late-onset panic disorder patients. Psychiatry Research, 211(2), 127–131.

  • Lai, C. H., & Wu, Y. T. (2014). The alterations in inter-hemispheric functional coordination of patients with panic disorder: The findings in the posterior sub-network of default mode network. Journal of Affective Disorders, 166, 279–284.

    PubMed  Google Scholar 

  • Ledoux, J. E. (2009). Emotion circuits in the brain. Annual Review of Neuroscience, 23(23), 155–184.

    Google Scholar 

  • Levens, S. M., Devinsky, O., & Phelps, E. A. (2011). Role of the left amygdala and right orbital frontal cortex in emotional interference resolution facilitation in working memory. Neuropsychologia, 49(12), 3201–3212.

    PubMed  PubMed Central  Google Scholar 

  • Mai, J. K., Paxinos, G., & Voss, T. (2008). Atlas of the human brain (3rd ed.). New York: Elsevier.

    Google Scholar 

  • Mayberg, H. S. (1999). Reciprocal limbic-cortical function and negative mood : Converging pet findings in depression and normal sadness. The American Journal of Psychiatry, 156(5), 675–682.

    CAS  PubMed  Google Scholar 

  • Mcmenamin, B. W., Langeslag, S. J. E., Sirbu, M., Padmala, S., & Pessoa, L. (2014). Network organization unfolds over time during periods of anxious anticipation. Journal of Neuroscience, 34(34), 11261–11273.

    CAS  PubMed  Google Scholar 

  • Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63(1), 129–151.

    PubMed  PubMed Central  Google Scholar 

  • Mobbs, D., Yu, R., Rowe, J. B., Eich, H., Feldmanhall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences, 107(47), 20582–20586.

    CAS  Google Scholar 

  • Münsterkotter, A. L., Notzon, S., Redlich, R., Grotegerd, D., Dohm, K., Arolt, V., et al. (2015). Spider or no spider? Neural correlates of sustained and phasic fear in spider phobia. Depression and Anxiety, 32(9), 656–663.

    PubMed  Google Scholar 

  • Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.

    PubMed  Google Scholar 

  • O’Daly, O. G., Trick, L., Scaife, J., Marshall, J., Ball, D., Phillips, M. L., et al. (2012). Withdrawal-associated increases and decreases in functional neural connectivity associated with altered emotional regulation in alcoholism. Neuropsychopharmacology, 37(10), 2267–2276.

    PubMed  PubMed Central  Google Scholar 

  • Ohman, A., Carlsson, K., Lundqvist, D., & Ingvar, M. (2007). On the unconscious subcortical origin of human fear. Physiology & Behavior, 92(1), 180–185.

    Google Scholar 

  • Oler, J. A., Birn, R. M., Patriat, R., Fox, A. S., Shelton, S. E., Burghy, C. A., et al. (2012). Evidence for coordinated functional activity within the extended amygdala of non-human and human primates. NeuroImage, 61(4), 1059–1066.

    PubMed  PubMed Central  Google Scholar 

  • Olmos, J. S. D., & Ingram, W. R. (1972). The projection field of the stria terminalis in the rat brain. An experimental study. Journal of Comparative Neurology, 146(3), 303–333.

    Google Scholar 

  • Phelps, C. E., Ledoux, J. E., Delgado, J. M. R., Nearing, K. I., & Ledoux, J. (2004). Extinction learning in humans: Role of the amygdala and vmpfc. Neuron, 43(6), 897–905.

    CAS  PubMed  Google Scholar 

  • Pourtois, G., Vocat, R., N’Diaye, K., Spinelli, L., Seeck, M., & Vuilleumier, P. (2010). Errors recruit both cognitive and emotional monitoring systems: Simultaneous intracranial recordings in the dorsal anterior cingulate gyrus and amygdala combined with fmri. Neuropsychologia, 48(4), 1144–1159.

    PubMed  Google Scholar 

  • Quirk, G. J., & Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33(1), 56–72.

    PubMed  Google Scholar 

  • Rabellino, D., Densmore, M., Harricharan, S., Jean, T., Mckinnon, M. C., & Lanius, R. A. (2018). Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype. Human Brain Mapping, 39(3), 1367–1379.

    PubMed  Google Scholar 

  • Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using granger causality and fmri. Neuroimage, 25(1), 230–242.

    PubMed  Google Scholar 

  • Roebroeck, A., Formisano, E., & Goebel, R. (2011). The identification of interacting networks in the brain using fmri: model selection, causality and deconvolution., 58(2), 296–302.

  • Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529–538.

    PubMed  Google Scholar 

  • Somerville, L. H., Wagner, D. D., Wig, G. S., Moran, J. M., Whalen, P. J., & Kelley, W. M. (2013). Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cerebral Cortex, 23(1), 49–60.

    PubMed  Google Scholar 

  • Somerville, L. H., Whalen, P. J., & Kelley, W. M. (2010). Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biological Psychiatry, 68(5), 416–424.

    PubMed  PubMed Central  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). Rest: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straube, T., Mentzel, H. J., & Miltner, W. H. R. (2007). Waiting for spiders: Brain activation during anticipatory anxiety in spider phobics. NeuroImage, 37(4), 1427–1436.

    PubMed  Google Scholar 

  • Torrisi, S., O’Connell, K., Davis, A., Reynolds, R., Balderston, N., Fudge, J. L., et al. (2015). Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Human Brain Mapping, 36(10), 4076–4088.

    PubMed  PubMed Central  Google Scholar 

  • Walker, D. L., Toufexis, D. J., & Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology, 463(1), 199–216.

    CAS  PubMed  Google Scholar 

  • Walker, D. L., & Davis, M. (2008). Role of the extended amygdala in short-duration versus sustained fear: A tribute to dr. lennart heimer. Brain Structure and Function, 213(1–2), 29–42.

    PubMed  Google Scholar 

  • Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and crf in sustained anxiety-like versus phasic fear-like responses. Progress in Neuropsychopharmacology & Biological Psychiatry, 33(8), 1291–1308.

    CAS  Google Scholar 

  • Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscienc., 4, 13.

    Google Scholar 

  • Yang, X., Kendrick, K. M., Wu, Q., Chen, T., Lama, S., Cheng, B., Li, S., Huang, X., & Gong, Q. (2013). Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety. PLoS One, 8(5), e63151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yassa, M. A., Hazlett, R. L., Stark, C. E. L., & Hoehn-Saric, R. (2012). Functional mri of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. Journal of Psychiatric Research, 46(8), 1045–1052.

    PubMed  PubMed Central  Google Scholar 

  • Zang, Z. X., Yan, C. G., Dong, Z. Y., Huang, J., & Zang, Y. F. (2012). Granger causality analysis implementation on matlab: A graphic user interface toolkit for fmri data processing. Journal of Neuroscience Methods, 203(2), 418–426.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (81571344, 81871344); Natural Science Foundation of Jiangsu Province (BK20161109, BK20191369); the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (18KJB190003); key research and development program (Social Development) project of Jiangsu province (BE2019609); Nanjing Medical Science and Technique Development Foundation, Outstanding Youth Project (JQX14008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manlong Pang; Yuan Zhong: These authors contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M., Zhong, Y., Hao, Z. et al. Resting-state causal connectivity of the bed nucleus of the stria terminalis in panic disorder. Brain Imaging and Behavior 15, 25–35 (2021). https://doi.org/10.1007/s11682-019-00229-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00229-x

Keywords

Navigation