Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Altered brain network organization in romantic love as measured with resting-state fMRI and graph theory

Abstract

Romantic love is a complex state that has been seen as similar to addiction. Previous task-based functional magnetic resonance imaging (fMRI) studies have shown that being in love is closely associated with functional brain changes in the reward and motivation system. However, romantic love-related functional connectivity network organization in resting-state fMRI has yet to be elucidated. To that end, here we used resting-state fMRI and graph theory to compare whole-brain functional network topology between an “in-love” group (n = 34, 16 females, currently in love and in a romantic relationship) and a “single” group (n = 32, 14 females, never in love and not in a romantic relationship). Compared to the single group, we found lower network segregation in the love group (i.e., lower small-worldness, mean clustering coefficient, and modularity), and these metrics were negatively associated with scores on the Passionate Love Scale (PLS) (an index of intense passionate/romantic love). Additionally, the love group displayed altered connectivity degree (reflecting the importance of a node): decreased degree in left angular gyrus and left medial orbitofrontal cortex, but increased degree in left fusiform gyrus. Furthermore, local efficiency or degree of these regions was significantly correlated to PLS scores. Taken together, results showed decreased overall brain functional segregation but enhanced emotional-social processing in romantic lovers. These findings provide the first evidence of love-related brain network organization changes and suggest similar but different brain network alterations between romantic love and addiction, providing new insights on the neural systems underlying romantic love.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7(2), 145–159.

  2. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.

  3. Aron, A., & Aron, E. N. (1986). Love and the expansion of self: Understanding attraction and satisfaction. Hemisphere Publishing Corp/Harper & Row Publishers.

  4. Aron, E. N., & Aron, A. (1996). Love and expansion of the self: The state of the model. Pers Relatsh, 3(1), 45–58.

  5. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327–337.

  6. Arzy, S., Seeck, M., Ortigue, S., Spinelli, L., & Blanke, O. (2006). Induction of an illusory shadow person. Nature, 443(7109), 287–287.

  7. Baler, R. D., & Volkow, N. D. (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559–566.

  8. Barrós-Loscertales, A., Meseguer, V., Sanjuán, A., Belloch, V., Parcet, M. A., Torrubia, R., & Avila, C. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. The European Journal of Neuroscience, 24(7), 2071–2074.

  9. Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11(17), 3829–3834.

  10. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248.

  11. Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7641–7646.

  12. Blanke, O., Ortigue, S., Landis, T., & Seeck, M. (2002). Neuropsychology: Stimulating illusory own-body perceptions. Nature, 419(6904), 269–270.

  13. Buckner, R., Andrews-Hanna, J., & Schacter, D. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

  14. Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: Graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113–140.

  15. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews. Neuroscience, 13(5), 336–349.

  16. Burkett, J. P., & Young, L. J. (2012). The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology, 224(1), 1–26.

  17. Farrer, C., Frey, S. H., Horn, J. D. V., Tunik, E., Turk, D., Inati, S., & Grafton, S. T. (2008). The angular gyrus computes action awareness representations. Cerebral Cortex, 18(2), 254–261.

  18. Fisher, H. E. (1998). Lust, attraction, and attachment in mammalian reproduction. Human Nature, 9(1), 23–52.

  19. Fisher, H. E., Xu, X., Aron, A., & Brown, L. L. (2016). Intense, passionate, romantic love: A natural addiction? How the fields that investigate romance and substance abuse can inform each other. Frontiers in Psychology, 7(40), 687.

  20. Fitzgerald, P. B., Srithiran, A., Benitez, J., Daskalakis, Z. Z., Oxley, T. J., Kulkarni, J., & Egan, G. F. (2008). An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Human Brain Mapping, 29(4), 490–501.

  21. Forbes, E. E., Christopher May, J., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., ... & Dahl, R. E. (2006). Reward-related decision-making in pediatric major depressive disorder: An fMRI study. Journal of Child Psychology and Psychiatry, 47(10), 1031–1040.

  22. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

  23. Gan, G., Zilverstand, A., Parvaz, M. A., Preston-Campbell, R. N., Uquillas, F. D. O., Moeller, S. J., ... & Alia-Klein, N. (2018). Habenula-prefrontal resting-state connectivity in reactive aggressive men–A pilot study. Neuropharmacology.

  24. Guimerà, R., & Amaral, L. A. N. (2005). Cartography of complex networks: Modules and universal roles. J Stat Mech, 2005(02), P02001.

  25. Haan, W. D., Pijnenburg, Y. A., Strijers, R. L., Made, Y. V. D., Flier, W. M. V. D., Scheltens, P., & Stam, C. J. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neuroscience, 10(1), 101.

  26. Hao, X., Wang, K., Li, W., Yang, W., Wei, D., Qiu, J., & Zhang, Q. (2013). Individual differences in brain structure and resting brain function underlie cognitive styles: Evidence from the embedded figures test. PLoS One, 8(12), e78089.

  27. Hatfield, E., & Rapson, R. L. (1987). Passionate love/sexual desire: Can the same paradigm explain both? Archives of Sexual Behavior, 16(3), 259–278.

  28. Hatfield, E., & Sprecher, S. (1986). Measuring passionate love in intimate relationships. Journal of Adolescence, 9(4), 383–410.

  29. Hazan, C., & Shaver, P. (1987). Romantic love conceptualized as an attachment process. Journal of Personality and Social Psychology, 52(3), 511–524.

  30. He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341–350.

  31. Heilig, M., Epstein, D. H., Nader, M. A., & Shaham, Y. (2016). Time to connect: Bringing social context into addiction neuroscience. Nature Reviews. Neuroscience, 17(9), 592.

  32. Heuvel, M. P., Den, V., & Olaf, S. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786.

  33. Hughes, B. L., & Beer, J. S. (2012). Orbitofrontal cortex and anterior cingulate cortex are modulated by motivated social cognition. Cerebral Cortex, 22(6), 1372–1381.

  34. Humphries, M. D., & Gurney, K. R. (2008). Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051.

  35. Jackson, P. L., Brunet, E., Meltzoff, A. N., & Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752–761.

  36. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.

  37. Kelly, C., Zuo, X. N., Gotimer, K., Cox, C. L., Lynch, L., Brock, D., … & Milham, M. P. (2011). Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biological Psychiatry, 69(7), 684–692.

  38. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683–3687.

  39. Konova, A. B., Moeller, S. J., Tomasi, D., & Goldstein, R. Z. (2015). Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Research, 1628.

  40. Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews. Neuroscience, 6(9), 691–702.

  41. Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341–372.

  42. Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 1393–1406.

  43. Liu, J., Liang, J., Qin, W., Tian, J., Yuan, K., Bai, L., & Li, Q. (2009). Dysfunctional connectivity patterns in chronic heroin users: An fMRI study. Neuroscience Letters, 460(1), 72–77.

  44. Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910–913.

  45. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298(5594), 824–827.

  46. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.

  47. O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41(2), 147–155.

  48. Ortigue, S., Bianchi-Demicheli, F., Hamilton, A. D. C., & Grafton, S. T. (2007). The neural basis of love as a subliminal prime: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 19(7), 1218–1230.

  49. Ray, S., Gohel, S. R., & Biswal, B. B. (2015). Altered functional connectivity strength in abstinent chronic cocaine smokers compared to healthy controls. Brain Connectivity, 5(8).

  50. Reis, H. T., & Aron, A. (2008). Love: What is it, why does it matter, and how does it operate? Perspectives on Psychological Science, 3(1), 80–86.

  51. Richang, Z. (1999). Psychological diagnosis, Shandong Education Publishing House. (in Chinese).

  52. Rolls, E. T., Kringelbach, M. L., & De Araujo, I. E. (2003). Different representations of pleasant and unpleasant odours in the human brain. The European Journal of Neuroscience, 18(3), 695–703.

  53. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.

  54. Rypma, B., Fischer, H., Rieckmann, A., Hubbard, N. A., Nyberg, L., & Bäckman, L. (2015). Dopamine D1 binding potential predicts fusiform BOLD activity during face-recognition performance. The Journal of Neuroscience, 35(44), 14702–14707.

  55. Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M. M., & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron, 39(4), 701–711.

  56. Song, H., Zou, Z., Kou, J., Liu, Y., Yang, L., Zilverstand, A., Zhang, X. (2015). Love-related changes in the brain: a resting-state functional magnetic resonance imaging study. Front Hum Neurosci, 9.

  57. Song, S., Zou, Z., Song, H., Wang, Y., Uquillas, F. D. O., Wang, H., & Chen, H. (2016). Romantic love is associated with enhanced inhibitory control in an emotional stop-signal task. Frontiers in Psychology, 7(687).

  58. Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys, 1(1), 1.

  59. Steenbergen, H. V., Langeslag, S. J. E., Band, G. P. H., & Hommel, B. (2014). Reduced cognitive control in passionate lovers. Motivation and Emotion, 38(3), 444–450.

  60. Sternberg, R. J. (1986). A triangular theory of love. Psychological Review, 93(2), 119–135.

  61. Sutin, A. R., & Gillath, O. (2009). Autobiographical memory phenomenology and content mediate attachment style and psychological distress. Journal of Counseling Psychology, 56(3), 351–364.

  62. Takahashi, K., Mizuno, K., Sasaki, A. T., Wada, Y., Tanaka, M., Ishii, A., & Zeki, S. (2015). Imaging the passionate stage of romantic love by dopamine dynamics. Frontiers in Human Neuroscience, 9, 191.

  63. Thakral, P. P., Madore, K. P., & Schacter, D. L. (2017). A role for the left angular gyrus in episodic simulation and memory. The Journal of Neuroscience, 37(34), 8142–8149.

  64. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.

  65. Volkow, N. D., Fowler, J. S., & Gene-Jack, W. (2003). The addicted human brain: Insights from imaging studies. The Journal of Clinical Investigation, 111(10), 1444–1451.

  66. Wlodarski, R., & Dunbar, R. I. M. (2014). The effects of romantic love on mentalizing abilities. Review of General Psychology, 18(4), 313–321.

  67. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

  68. Xu, X., Aron, A., Brown, L., Cao, G., Feng, T., & Weng, X. (2011). Reward and motivation systems: A brain mapping study of early-stage intense romantic love in Chinese participants. Human Brain Mapping, 32(2), 249–257.

  69. Xu, X., Brown, L., Aron, A., Cao, G., Feng, T., Acevedo, B., & Weng, X. (2012). Regional brain activity during early-stage intense romantic love predicted relationship outcomes after 40 months: An fMRI assessment. Neuroscience Letters, 526(1), 33–38.

  70. Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4(13), 13.

  71. Yeo, B. T. T., Krienen, F. M., Jorge, S., Sabuncu, M. R., Danial, L., Marisa, H., & Polimeni, J. R. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.

  72. Yin, J., Zhang, J. X., Xie, J., Zou, Z., & Huang, X. (2013). Gender differences in perception of romance in Chinese college students. PLoS One, 8(10), e76294.

  73. Yin, J., Zou, Z., Song, H., Zhang, Z., Yang, B., & Huang, X. (2018). Cognition, emotion and reward networks associated with sex differences for romantic appraisals. Scientific Reports, 8(1), 2835.

  74. Yuan, K., Qin, W., Liu, J., Guo, Q., Dong, M., Sun, J., & Wang, Y. (2010). Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals. Neuroscience Letters, 477(1), 37–42.

  75. Zeki, S., & Romaya, J. P. (2010). The brain reaction to viewing faces of opposite-and same-sex romantic partners. PLoS One, 5(12), e15802.

  76. Zhang, X., Chen, X., Yu, Y., Sun, D., Ma, N., He, S., Hu, X., & Zhang, D. (2009). Masked smoking-related images modulate brain activity in smokers. Human Brain Mapping, 30(3), 896–907.

  77. Zhang, X., Salmeron, B. J., Ross, T. J., Gu, H., Geng, X., Yang, Y., & Stein, E. A. (2011). Anatomical differences and network characteristics underlying smoking cue reactivity. Neuroimage, 54(1), 131–141.

  78. Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., Yong, H., & Gong, Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70(4), 334–342.

  79. Zhang, Y., Ndasauka, Y., Hou, J., Chen, J., Yang, L. Z., Wang, Y., & Zhou, Y. (2016). Cue-induced behavioral and neural changes among excessive internet gamers and possible application of cue exposure therapy to internet gaming disorder. Frontiers in Psychology, 7(844).

  80. Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5), 886–903.

  81. Zou, Z., Song, H., Zhang, Y., & Zhang, X. (2016). Romantic love vs. drug addiction may inspire a new treatment for addiction. Front Psychol, 7(687).

Download references

Acknowledgements

We thank Yun Tian for his help in data processing.

Funding sources

This study was funded by the Fundamental Research Funds for the Central Universities (#SWU1809006) and the National Natural Science Foundation of China (31771237).

Author information

Z.Z., and H.C. were responsible for the original study design. C.W., S.S. and H.S. collected the data. C.W. and F.d.U. performed data analysis. Z.Z., C.W., A.Z., and H.C. interpreted the findings. C.W., S.S. and F.d.U. wrote the manuscript. All authors contributed to the final version, approved the publication of the final version and agreed to be accountable for the integrity and accuracy of all aspects of the work.

Correspondence to Hong Chen or Zhiling Zou.

Ethics declarations

This study was approved by the Ethics Committee of Southwest University (Chongqing, China). Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Song, S., d’Oleire Uquillas, F. et al. Altered brain network organization in romantic love as measured with resting-state fMRI and graph theory. Brain Imaging and Behavior (2020). https://doi.org/10.1007/s11682-019-00226-0

Download citation

Keywords

  • Romantic love
  • Resting-state fMRI
  • Graph theory
  • Angular gyrus
  • Fusiform