Skip to main content

Advertisement

Log in

Early prediction of donepezil cognitive response in Alzheimer’s disease by brain perfusion single photon emission tomography

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Currently, there is no effective means to evaluate donepezil response. We evaluated brain perfusion change at 4 h after donepezil administration (4 h DNPZ) to predict cognitive responses after 6 months of medication. CERAD neuropsychological assessment battery was used to define cognitive response at 6 months. We compared 4 h DNPZ to baseline single photon emission tomography (SPECT) by statistical parametric mapping to identify perfusion changes in responders (N = 16) and non-responders (N = 7). In responders, there were significant relatively increase in perfusion in left parietal lobe (BA39, 7, 1), right superior frontal gyrus (BA6) and right middle occipital gyrus (BA39). In the non-responders, perfusion was relatively increase in the left parietal lobe (BA39) only. In an explorative analysis, we found a significant correlation between perfusion changes in right BA6 and CERAD score changes at 6 months. Different SPECT perfusion changes at 4 h after donepezil administration were demonstrated in the group of responders and non-responders with potential correlation with CERAD score change. Thus, 4 h DNPZ brain perfusion SPECT can be used to predict donepezil response at 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alzheimer's association (2016). Current Alzheimer's treatment. www.alz.org. Accessed December 12 2016.

  • Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., & Bellec, P. (2017). Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis. Alzheimers Dement (Amst), 8, 73–85. https://doi.org/10.1016/j.dadm.2017.03.007.

    Article  Google Scholar 

  • Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., et al. (2002). Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Disease and Associated Disorders, 16(4), 203–212.

    Article  Google Scholar 

  • Bartorelli, L., Giraldi, C., Saccardo, M., Cammarata, S., Bottini, G., Fasanaro, A. M., et al. (2005). Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer's disease. Current Medical Research and Opinion, 21(11), 1809–1817. https://doi.org/10.1185/030079905X65655.

    Article  CAS  PubMed  Google Scholar 

  • Boada-Rovira, M., Brodaty, H., Cras, P., Baloyannis, S., Emre, M., Zhang, R., et al. (2004). Efficacy and safety of donepezil in patients with Alzheimer's disease: results of a global, multinational, clinical experience study. Drugs & Aging, 21(1), 43–53.

    Article  CAS  Google Scholar 

  • Davidsson, P., Blennow, K., Andreasen, N., Eriksson, B., Minthon, L., & Hesse, C. (2001). Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer's disease. Neuroscience Letters, 300(3), 157–160. https://doi.org/10.1016/S0304-3940(01)01586-5.

    Article  CAS  PubMed  Google Scholar 

  • Gallucci, M., Spagnolo, P., Arico, M., & Grossi, E. (2016). Predictors of Response to Cholinesterase Inhibitors Treatment of Alzheimer's Disease: Date Mining from the TREDEM Registry. Journal of Alzheimer's Disease, 50(4), 969–979. https://doi.org/10.3233/jad-150747.

    Article  CAS  PubMed  Google Scholar 

  • Hongo, J., Nakaaki, S., Shinagawa, Y., Murata, Y., Sato, J., Tatsumi, H., et al. (2008). SPECT-identified neuroanatomical predictor of the cognitive effects of donepezil treatment in patients with Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 26(6), 556–566. https://doi.org/10.1159/000181148.

    Article  CAS  PubMed  Google Scholar 

  • Kljajevic, V., Grothe, M. J., Ewers, M., & Teipel, S. (2014). Distinct pattern of hypometabolism and atrophy in preclinical and predementia Alzheimer's disease. Neurobiology of Aging, 35(9), 1973–1981. https://doi.org/10.1016/j.neurobiolaging.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Qin, W., Liu, H., Fan, L., Wang, J., Jiang, T., et al. (2013). Subregions of the human superior frontal gyrus and their connections. Neuroimage, 78, 46–58. https://doi.org/10.1016/j.neuroimage.2013.04.011.

    Article  PubMed  Google Scholar 

  • Liguori, C., Chiaravalloti, A., Sancesario, G., Stefani, A., Sancesario, G. M., Mercuri, N. B., et al. (2016). Cerebrospinal fluid lactate levels and brain [18F] FDG PET hypometabolism within the default mode network in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 43(11), 2040–2049. https://doi.org/10.1007/s00259-016-3417-2.

    Article  CAS  PubMed  Google Scholar 

  • Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The Default Mode Network in Healthy Individuals: A Systematic Review and Meta-Analysis. Brain Connectivity, 7(1), 25–33. https://doi.org/10.1089/brain.2016.0438.

    Article  PubMed  Google Scholar 

  • Makris, N., Papadimitriou, G. M., Sorg, S., Kennedy, D. N., Caviness, V. S., & Pandya, D. N. (2007). The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study. Neuroimage, 37(4), 1100–1111. https://doi.org/10.1016/j.neuroimage.2007.05.042.

    Article  PubMed  PubMed Central  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mega, M. S., Dinov, I. D., Lee, L., O'Connor, S. M., Masterman, D. M., Wilen, B., et al. (2000). Orbital and dorsolateral frontal perfusion defect associated with behavioral response to cholinesterase inhibitor therapy in Alzheimer's disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 209–218. https://doi.org/10.1176/jnp.12.2.209.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, L. F., Gomes, K. B., Silveira, J. N., Pianetti, G. A., Byrro, R. M., Peles, P. R., et al. (2015). Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer's disease and mixed dementia: a one-year naturalistic study. Journal of Alzheimer's Disease, 45(2), 609–620. https://doi.org/10.3233/jad-142148.

    Article  CAS  PubMed  Google Scholar 

  • Nobili, F., Vitali, P., Canfora, M., Girtler, N., De Leo, C., Mariani, G., et al. (2002). Effects of long-term Donepezil therapy on rCBF of Alzheimer's patients. Clinical Neurophysiology, 113(8), 1241–1248.

    Article  CAS  Google Scholar 

  • Raschetti, R., Maggini, M., Sorrentino, G. C., Martini, N., Caffari, B., & Vanacore, N. (2005). A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer's disease. European Journal of Clinical Pharmacology, 61(5–6), 361–368. https://doi.org/10.1007/s00228-005-0946-1.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer, B. (2005). Donepezil: a review. Expert Opinion on Drug Metabolism & Toxicology, 1(3), 527–536. https://doi.org/10.1517/17425255.1.3.527.

    Article  CAS  Google Scholar 

  • Tangwongchai, S., Supasitthumrong, T., Hemrunroj, S., Tunvirachaisakul, C., Chuchuen, P., Houngngam, N., et al. (2018). In Thai nationals, the ApoE4 allele affects multiple domains of neuropsychological, biobehavioral, and social functioning thereby contributing to Alzheimer's disorder, while the ApoE3 allele protects against neuropsychiatric symptoms and psychosocial deficits. Molecular Neurobiology, 55(8), 6449–6462. https://doi.org/10.1007/s12035-017-0848-0.

    Article  CAS  PubMed  Google Scholar 

  • Tateno, M., Kobayashi, S., Utsumi, K., Morii, H., & Fujii, K. (2008). Quantitative analysis of the effects of donepezil on regional cerebral blood flow in Alzheimer's disease by using an automated program, 3DSRT. Neuroradiology, 50(8), 723–727. https://doi.org/10.1007/s00234-008-0401-y.

    Article  PubMed  Google Scholar 

  • Tranfaglia, C., Palumbo, B., Siepi, D., Sinzinger, H., & Parnetti, L. (2009). Semi-quantitative analysis of perfusion of Brodmann areas in the differential diagnosis of cognitive impairment in Alzheimer's disease, fronto-temporal dementia and mild cognitive impairment. Hellenic Journal of Nuclear Medicine, 12(2), 110–114.

    PubMed  Google Scholar 

  • Tunvirachaisakul, C., Supasitthumrong, T., Tangwongchai, S., Hemrunroj, S., Chuchuen, P., Tawankanjanachot, I., et al. (2018). Characteristics of mild cognitive impairment using the Thai version of the consortium to establish a registry for Alzheimer's disease tests: a multivariate and machine learning study. Dementia and Geriatric Cognitive Disorders, 45(1–2), 38–48. https://doi.org/10.1159/000487232.

    Article  PubMed  Google Scholar 

  • Varrone, A., Pappata, S., Caraco, C., Soricelli, A., Milan, G., Quarantelli, M., et al. (2002). Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks. European Journal of Nuclear Medicine and Molecular Imaging, 29(11), 1447–1454. https://doi.org/10.1007/s00259-002-0883-5.

    Article  PubMed  Google Scholar 

  • Waring, J. F., Tang, Q., Robieson, W. Z., King, D. P., Das, U., Dubow, J., et al. (2015). APOE-varepsilon4 carrier status and donepezil response in patients with Alzheimer's disease. Journal of Alzheimer's Disease, 47(1), 137–148. https://doi.org/10.3233/jad-142589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn, M., Herbert, C., Ethofer, T., Flaisch, T., & Kissler, J. (2017). Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex. Cortex, 96, 31–45. https://doi.org/10.1016/j.cortex.2017.08.018.

    Article  PubMed  Google Scholar 

  • Wiggs, C. L., Weisberg, J., & Martin, A. (1999). Neural correlates of semantic and episodic memory retrieval. Neuropsychologia, 37(1), 103–118.

    Article  CAS  Google Scholar 

  • Xiao, T., Jiao, B., Zhang, W., Tang, B., & Shen, L. (2016). Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs, 30(10), 899–907. https://doi.org/10.1007/s40263-016-0356-1.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., Ha-Kawa, S., Yoshimura, M., Nobuhara, K., Kinoshita, T., & Sawada, S. (2007). Effectiveness of treatment with donepezil hydrochloride and changes in regional cerebral blood flow in patients with Alzheimer's disease. Annals of Nuclear Medicine, 21(5), 257–265. https://doi.org/10.1007/s12149-007-0022-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Thai Government Fund [grant number GRB_APS_07_57_30_05]. We would like to thank all nuclear medicine technologists, nurses, Ms. Treerat Nasingha, and Ms. Kanokon Srirojnoppakun for their technical assistance. We appreciate Prof. Kammant Phanthumchinda’s advise. We also thank Research Affairs, Faculty of Medicine Chulalongkorn University for providing English editing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supatporn Tepmongkol.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepmongkol, S., Hemrungrojn, S., Dupont, P. et al. Early prediction of donepezil cognitive response in Alzheimer’s disease by brain perfusion single photon emission tomography. Brain Imaging and Behavior 13, 1665–1673 (2019). https://doi.org/10.1007/s11682-019-00182-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00182-9

Keywords

Navigation