Skip to main content

Advertisement

Log in

Cerebral glucose metabolism differs according to future weight change

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

A Correction to this article was published on 25 April 2023

This article has been updated

Abstract

The brain is known to play a central role in controlling the desire to eat. We aimed to evaluate the brain regions that might have a long-term effect on eating behavior and weight changes. We utilized the data of cognitively normal subjects who are examined by several neurologic tests, and followed-up for 36 months from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and investigated to search the brain regions that are associated with future weight change. The weight of each subject was measured on each visit at baseline (W0), 36 (W36) months after brain 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET). Percentage (%) change of weight was calculated as follows: [(W36–W0)/W0]*100. We classified each subject’s change into one of three categories: weight loss, stable, and weight gain. Dynamic 3-dimensional scans of six 5-min frames were acquired 30 mins after injection of 185 MBq of FDG. Image analysis was done using Statistical Parametric Mapping 12. Ninety-six subjects were included in this study (male 54, female 42). Subjects with future weight gain showed hypometabolism in left cerebellum compared with those with future weight loss & stable. Percentage change of weight was positively associated with brain metabolism in right insula, and right caudate nucleus. In conclusion, subjects with future weight gain showed hypometabolism in left cerebellum, and percentage change of weight was positively associated with brain metabolism in right insula, and right caudate nucleus. This study raises the possibility that the brain glucose metabolism precedes the future weight change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Cerf-Ducastel, B., & Murphy, C. (2001). fMRI activation in response to odorants orally delivered in aqueous solutions. Chemical Senses, 26(6), 625–637.

    Article  CAS  PubMed  Google Scholar 

  • Colombel, C., Lalonde, R., & Caston, J. (2002). The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Research, 950(1–2), 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Cornier, M.-A., Salzberg, A. K., Endly, D. C., Bessesen, D. H., Rojas, D. C., & Tregellas, J. R. (2009). The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals. PLoS One, 4(7), e6310–e6310. https://doi.org/10.1371/journal.pone.0006310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Parigi, A., Gautier, J. F., Chen, K., Salbe, A. D., Ravussin, E., Reiman, E., et al. (2002). Neuroimaging and obesity: Mapping the brain responses to hunger and satiation in humans using positron emission tomography. Annals of the New York Academy of Sciences, 967, 389–397.

    Article  PubMed  Google Scholar 

  • Eisenstein, S. A., Bischoff, A. N., Gredysa, D. M., Antenor-Dorsey, J. A., Koller, J. M., Al-Lozi, A., et al. (2015). Emotional eating phenotype is associated with central dopamine D2 receptor binding independent of body mass index. Scientific Reports, 5, 11283. https://doi.org/10.1038/srep11283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flegal, K. M., Carroll, M. D., Kuczmarski, R. J., & Johnson, C. L. (1998). Overweight and obesity in the United States: Prevalence and trends, 1960-1994. International Journal of Obesity and Related Metabolic Disorders, 22(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, J. F., Chen, K., Salbe, A. D., Bandy, D., Pratley, R. E., Heiman, M., et al. (2000). Differential brain responses to satiation in obese and lean men. Diabetes, 49(5), 838–846.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, J. F., Del Parigi, A., Chen, K., Salbe, A. D., Bandy, D., Pratley, R. E., et al. (2001). Effect of satiation on brain activity in obese and lean women. Obesity Research, 9(11), 676–684. https://doi.org/10.1038/oby.2001.92.

    Article  CAS  PubMed  Google Scholar 

  • Killgore, W. D., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage, 19(4), 1381–1394.

    Article  PubMed  Google Scholar 

  • Kinomura, S., Kawashima, R., Yamada, K., Ono, S., Itoh, M., Yoshioka, S., et al. (1994). Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Research, 659(1–2), 263–266.

    Article  CAS  PubMed  Google Scholar 

  • LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y. H., Nobre, A. C., & Mesulam, M. M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience, 115(2), 493–500.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223(4633), 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y., & Ikuta, T. (2017). Caudate-Precuneus functional connectivity is associated with obesity preventive eating tendency. Brain Connectivity, 7(3), 211–217. https://doi.org/10.1089/brain.2016.0424.

    Article  PubMed  Google Scholar 

  • Oliveira-Maia, A. J., de Araujo, I. E., Monteiro, C., Workman, V., Galhardo, V., & Nicolelis, M. A. (2012). The insular cortex controls food preferences independently of taste receptor signaling. Frontiers in Systems Neuroscience, 6, 5. https://doi.org/10.3389/fnsys.2012.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pak, K., Kim, S. J., & Kim, I. J. (2018). Obesity and brain positron emission tomography. Nuclear Medicine and Molecular Imaging, 52(1), 16–23. https://doi.org/10.1007/s13139-017-0483-8.

    Article  PubMed  Google Scholar 

  • Robinson, D. A. (1976). Adaptive gain control of the Vestibulo-ocular reflex by the cerebellum (Vol. 39).

  • Small, D. M. (2009). Individual differences in the neurophysiology of reward and the obesity epidemic. International Journal of Obesity, 33(Suppl 2), S44–S48. https://doi.org/10.1038/ijo.2009.71.

    Article  PubMed  Google Scholar 

  • Small, D. M., Zald, D. H., Jones-Gotman, M., Zatorre, R. J., Pardo, J. V., Frey, S., et al. (1999). Human cortical gustatory areas: A review of functional neuroimaging data. Neuroreport, 10(1), 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C., & Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain, 124(Pt 9), 1720–1733.

    Article  CAS  PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Hartley, C. A., Desmond, J. E., Zhao, Z., Glover, G. H., et al. (1998). Odorant-induced and sniff-induced activation in the cerebellum of the human. The Journal of Neuroscience, 18(21), 8990–9001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward, T., Pico-Perez, M., Mata, F., Martinez-Zalacain, I., Cano, M., Contreras-Rodriguez, O., et al. (2016). Emotion regulation and excess weight: Impaired affective processing characterized by dysfunctional insula activation and connectivity. PLoS One, 11(3), e0152150. https://doi.org/10.1371/journal.pone.0152150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tataranni, P. A., & DelParigi, A. (2003). Functional neuroimaging: A new generation of human brain studies in obesity research. Obesity Reviews, 4(4), 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Vandenbergh, J., Dupont, P., Fischler, B., Bormans, G., Persoons, P., Janssens, J., et al. (2005). Regional brain activation during proximal stomach distention in humans: A positron emission tomography study. Gastroenterology, 128(3), 564–573.

    Article  PubMed  Google Scholar 

  • Zald, D. H., & Pardo, J. V. (1997). Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 4119–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zald, D. H., & Pardo, J. V. (2000). Functional neuroimaging of the olfactory system in humans. International Journal of Psychophysiology, 36(2), 165–181.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre, R. J., Jones-Gotman, M., Evans, A. C., & Meyer, E. (1992). Functional localization and lateralization of human olfactory cortex. Nature, 360(6402), 339–340. https://doi.org/10.1038/360339a0.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. N., & Wang, J. J. (2008). The cerebellum in feeding control: Possible function and mechanism. Cellular and Molecular Neurobiology, 28(4), 469–478. https://doi.org/10.1007/s10571-007-9236-z.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungjune Pak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Jang, M., Kim, E.H. et al. Cerebral glucose metabolism differs according to future weight change. Brain Imaging and Behavior 14, 2295–2301 (2020). https://doi.org/10.1007/s11682-019-00180-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00180-x

Keywords

Navigation