Resting-state functional connectivity, cognition, and fatigue in response to cognitive exertion: a novel study in adolescents with chronic fatigue syndrome

Abstract

Emerging evidence suggests that central nervous system dysfunction may underlie the core symptoms of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) in adults, such as cognitive disturbance, fatigue and post-exertional malaise. Research into brain dysfunction in the pediatric CFS/ME context, however, is severely lacking. It is unclear whether the adolescent CFS/ME brain functions differently compared with healthy peers, particularly in situations where significant mental effort is required. This study used resting-state functional MRI in a novel repeated-measures design to evaluate intrinsic connectivity, cognitive function, and subjective fatigue, before and after a period of cognitive exertion in 48 adolescents (25 CFS/ME, 23 healthy controls). Results revealed little evidence for a differential effect of cognitive exertion in CFS/ME compared with controls. Both groups demonstrated a similar rate of reduced intrinsic functional connectivity within the default mode network (DMN), reduced sustained attentional performance, slower processing speed, and increased subjective fatigue as a result of cognitive exertion. However, CFS/ME adolescents consistently displayed higher subjective fatigue, and controls outperformed the CFS/ME group overall on cognitive measures of processing speed, sustained attention and new learning. No brain-behavior relationships were observed between DMN connectivity, cognitive function, and fatigue over time. These findings suggest that effortful cognitive tasks may elicit similar levels of energy expenditure across all individuals in the form of reduced brain functioning and associated fatigue. However, CFS/ME may confer a lower starting threshold from which to access energy reserves and cognitive resources when cognitive effort is required.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 20(2), 870–888. https://doi.org/10.1016/s1053-8119(03)00336-7.

    Article  PubMed  Google Scholar 

  2. Arnett, S. V., Alleva, L. M., Korossy-Horwood, R., & Clark, I. A. (2011). Chronic fatigue syndrome--a neuroimmunological model. Medical Hypotheses, 77(1), 77–83.

    CAS  Article  Google Scholar 

  3. Australian Bureau of Statistics: Socio-Economic Indexes for Areas (SEIFA). (2011). Retrieved from http://www.abs.gov.au/websitedbs/censushome.nsf/home/seifa. Accessed 05 Nov 2016

  4. Bakken, I., Tveito, K., Gunnes, N., Ghaderi, S., Stoltenberg, C., Trogstad, L., . . . Magnus, P. (2014). Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: A population-based registry study from Norway 2008-2012. BMC Medicine, 12(1), 167. https://doi.org/10.1186/s12916-014-0167-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnden, L. R., Crouch, B., Kwiatek, R., Burnet, R., Mernone, A., Chryssidis, S., . . . Del Fante, P. (2011). A brain MRI study of chronic fatigue syndrome: Evidence of brainstem dysfunction and altered homeostasis. NMR in Biomedicine, 24(10), 1302–1312. https://doi.org/10.1002/nbm.1692.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bisecco, A., Nardo, F. D., Docimo, R., Caiazzo, G., d'Ambrosio, A., Bonavita, S., . . . Gallo, A. (2017). Fatigue in multiple sclerosis: The contribution of resting-state functional connectivity reorganization. Multiple Sclerosis, 1352458517730932. https://doi.org/10.1177/1352458517730932, 24, 1696, 1705.

  8. Boissoneault, J., Letzen, J., Lai, S., Robinson, M. E., & Staud, R. (2016). Static and dynamic functional connectivity in patients with chronic fatigue syndrome: Use of arterial spin labelling fMRI. Clinical Physiology and Functional Imaging, 38, 128–137. https://doi.org/10.1111/cpf.12393.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brooks, J. C., Roberts, N., Whitehouse, G., & Majeed, T. (2000). Proton magnetic resonance spectroscopy and morphometry of the hippocampus in chronic fatigue syndrome. The British Journal of Radiology, 73(875), 1206–1208.

    CAS  Article  Google Scholar 

  10. Buchwald, D., Cheney, P. R., Peterson, D. L., Henry, B., Wormsley, S. B., Geiger, A., . . ., Ablashi D.V., Salahuddin S.Z., Saxinger C., Biddle R. (1992). A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus type 6 infection. Annals of Internal Medicine, 116(2), 103–113.

    CAS  Article  Google Scholar 

  11. Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K. A., Brammer, M., Zelaya, F., . . . Godfrey, E. L. (2006). Probing the working memory system in chronic fatigue syndrome: A functional magnetic resonance imaging study using the n-back task. Psychosomatic Medicine, 68(6), 947–955. https://doi.org/10.1097/01.psy.0000242770.50979.5f.

    Article  PubMed  Google Scholar 

  12. Chaudhuri, A., Condon, B. R., Gow, J. W., Brennan, D., & Hadley, D. M. (2003). Proton magnetic resonance spectroscopy of basal ganglia in chronic fatigue syndrome. Neuroreport, 14(2), 225–228. https://doi.org/10.1097/01.wnr.0000054960.21656.64.

    CAS  Article  PubMed  Google Scholar 

  13. Chen, R., Liang, F. X., Moriya, J., Yamakawa, J., Sumino, H., Kanda, T., & Takahashi, T. (2008). Chronic fatigue syndrome and the central nervous system. The Journal of International Medical Research, 36(5), 867–874.

    CAS  Article  Google Scholar 

  14. Cockshell, S. J., & Mathias, J. L. (2010). Cognitive functioning in chronic fatigue syndrome: A meta-analysis. Psychological Medicine, 40(8), 1253–1267. https://doi.org/10.1017/s0033291709992054.

    CAS  Article  PubMed  Google Scholar 

  15. CogState computerized testing of cognitive function. (version 1.0). (2007). Retrieved from https://cogstate.com/. Accessed 05 Nov 2016

  16. Cook, D. B., O'Connor, P. J., Lange, G., & Steffener, J. (2007). Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. NeuroImage, 36(1), 108–122. https://doi.org/10.1016/j.neuroimage.2007.02.033.

    Article  PubMed  Google Scholar 

  17. Cope, H., Pernet, A., Kendall, B., & David, A. (1995). Cognitive functioning and magnetic resonance imaging in chronic fatigue. The British Journal of Psychiatry, 167(1), 86–94.

    CAS  Article  Google Scholar 

  18. Crawley, E., & Sterne, J. A. (2009). Association between school absence and physical function in paediatric chronic fatigue syndrome/myalgic encephalopathy. Archives of Disease in Childhood, 94(10), 752–756. https://doi.org/10.1136/adc.2008.143537.

    CAS  Article  PubMed  Google Scholar 

  19. Crawley, E., Emond, A. M., & Sterne, J. A. (2011). Unidentified chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a major cause of school absence: Surveillance outcomes from school-based clinics. BMJ Open, 1(2), e000252. https://doi.org/10.1136/bmjopen-2011-000252.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crichton, A., Knight, S. J., Oakley, E., Babl, F., & Anderson, V. (2015). Fatigue in child chronic health conditions: A systematic review of assessment instruments. Pediatrics, 135(4), In Press.), e1015–e1031.

    Article  Google Scholar 

  21. Darby, D. G., Pietrzak, R. H., Fredrickson, J., Woodward, M., Moore, L., Fredrickson, A., . . . Maruff, P. (2012). Intraindividual cognitive decline using a brief computerized cognitive screening test. Alzheimers Dement, 8(2), 95–104. https://doi.org/10.1016/j.jalz.2010.12.009.

    Article  PubMed  Google Scholar 

  22. de Lange, F. P., Kalkman, J. S., Bleijenberg, G., Hagoort, P., van der Meer, J. W., & Toni, I. (2005). Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage, 26(3), 777–781. https://doi.org/10.1016/j.neuroimage.2005.02.037.

    Article  PubMed  Google Scholar 

  23. de Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., van der Meer, J. W., & Toni, I. (2008). Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain, 131(Pt 8), 2172–2180. https://doi.org/10.1093/brain/awn140.

    Article  PubMed  Google Scholar 

  24. Deale, A., & Wessely, S. (2001). Patients' perceptions of medical care in chronic fatigue syndrome. Social Science & Medicine, 52(12), 1859–1864.

    CAS  Article  Google Scholar 

  25. Falleti, M. G., Maruff, P., Collie, A., & Darby, D. G. (2006). Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. Journal of Clinical and Experimental Neuropsychology, 28(7), 1095–1112. https://doi.org/10.1080/13803390500205718.

    Article  PubMed  Google Scholar 

  26. Fischer, T., Langner, R., Birbaumer, N., & Brocke, B. (2008). Arousal and attention: Self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort. Journal of Cognitive Neuroscience, 20(8), 1443–1453. https://doi.org/10.1162/jocn.2008.20101.

    Article  PubMed  Google Scholar 

  27. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Gay, C. W., Robinson, M. E., Lai, S., O'Shea, A., Craggs, J. G., Price, D. D., & Staud, R. (2016). Abnormal resting-state functional connectivity in patients with chronic fatigue syndrome: Results of seed and data-driven analyses. Brain Connectivity, 6(1), 48–56. https://doi.org/10.1089/brain.2015.0366.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gui, D., Xu, S., Zhu, S., Fang, Z., Spaeth, A. M., Xin, Y., . . . Rao, H. (2015). Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. NeuroImage, 120, 323–330. https://doi.org/10.1016/j.neuroimage.2015.07.030.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gur, A., & Oktayoglu, P. (2008). Central nervous system abnormalities in fibromyalgia and chronic fatigue syndrome: New concepts in treatment. Current Pharmaceutical Design, 14(13), 1274–1294.

    CAS  Article  Google Scholar 

  31. Haig-Ferguson, A., Tucker, P., Eaton, N., Hunt, L., & Crawley, E. (2009). Memory and attention problems in children with chronic fatigue syndrome or myalgic encephalopathy. Archives of Disease in Childhood, 94(10), 757–762. https://doi.org/10.1136/adc.2008.143032.

    CAS  Article  PubMed  Google Scholar 

  32. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381. https://doi.org/10.1016/j.jbi.2008.08.010.

    Article  Google Scholar 

  33. Hemington, K. S., Wu, Q., Kucyi, A., Inman, R. D., & Davis, K. D. (2016). Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Structure & Function, 221(8), 4203–4219. https://doi.org/10.1007/s00429-015-1161-1.

    CAS  Article  Google Scholar 

  34. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. https://doi.org/10.1109/72.761722.

    CAS  Article  PubMed  Google Scholar 

  35. Jason, L. A., Bell, D. S., Rowe, K., Van Hoof, E., Jordan, K., Lapp, C. W., . . . De Meirleir, K. (2006). A pediatric case definition for Myalgic Encephalomyalitis and chronic fatigue syndrome. J Chron Fat Synd, 13(2/3), 1–44.

    Google Scholar 

  36. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015.

    Article  Google Scholar 

  37. Josev, E. K., Jackson, M. L., Bei, B., Trinder, J., Harvey, A., Clarke, C., . . . Knight, S. J. (2017). Sleep quality in adolescents with chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME). Journal of Clinical Sleep Medicine, 13(9), 1057–1066. https://doi.org/10.5664/jcsm.6722.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kawatani, J., Mizuno, K., Shiraishi, S., Takao, M., Joudoi, T., Fukuda, S., . . . Tomoda, A. (2011). Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome--a 6-month follow-up study. Brain Dev, 33(10), 832–841. https://doi.org/10.1016/j.braindev.2010.12.009.

    Article  PubMed  Google Scholar 

  39. Kim, B. H., Namkoong, K., Kim, J. J., Lee, S., Yoon, K. J., Choi, M., & Jung, Y. C. (2015). Altered resting-state functional connectivity in women with chronic fatigue syndrome. Psychiatry Research, 234(3), 292–297. https://doi.org/10.1016/j.pscychresns.2015.10.014.

    Article  PubMed  Google Scholar 

  40. Knight, S. J., Harvey, A., Lubitz, L., Rowe, K., Reveley, C., Veit, F., . . . Scheinberg, A. (2013a). Paediatric chronic fatigue syndrome: Complex presentations and protracted time to diagnosis. Journal of Paediatrics and Child Health, 49(11), 919–924. https://doi.org/10.1111/jpc.12425.

    Article  PubMed  Google Scholar 

  41. Knight, S. J., Scheinberg, A., & Harvey, A. R. (2013b). Interventions in pediatric chronic fatigue syndrome/myalgic encephalomyelitis: A systematic review. The Journal of Adolescent Health, 53(2), 154–165. https://doi.org/10.1016/j.jadohealth.2013.03.009.

    Article  PubMed  Google Scholar 

  42. Knight, S. J., Harvey, A., Hennel, S., Lubitz, L., Rowe, K., Reveley, C., . . . Scheinberg, A. (2015). Measuring quality of life and fatigue in adolescents with chronic fatigue syndrome: Estimates of feasibility, internal consistency and parent–adolescent agreement of the PedsQLTM. Fatigue: Biomedicine, Health & Behavior, 3(4), 220–234. https://doi.org/10.1080/21641846.2015.1090816.

    Article  Google Scholar 

  43. Kral, T. V., Heo, M., Whiteford, L. M., & Faith, M. S. (2012). Effects on cognitive performance of eating compared with omitting breakfast in elementary schoolchildren. Journal of Developmental and Behavioral Pediatrics, 33(1), 9–16. https://doi.org/10.1097/DBP.0b013e31823f2f35.

    Article  PubMed  Google Scholar 

  44. Lange, G., DeLuca, J., Maldjian, J. A., Lee, H., Tiersky, L. A., & Natelson, B. H. (1999). Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. Journal of the Neurological Sciences, 171(1), 3–7.

    CAS  Article  Google Scholar 

  45. Lange, G., Holodny, A. I., DeLuca, J., Lee, H. J., Yan, X. H., Steffener, J., & Natelson, B. H. (2001). Quantitative assessment of cerebral ventricular volumes in chronic fatigue syndrome. Applied Neuropsychology, 8(1), 23–30. https://doi.org/10.1207/S15324826AN0801_4.

    CAS  Article  PubMed  Google Scholar 

  46. Lange, G., Steffener, J., Cook, D. B., Bly, B. M., Christodoulou, C., Liu, W. C., . . . Natelson, B. H. (2005). Objective evidence of cognitive complaints in chronic fatigue syndrome: A BOLD fMRI study of verbal working memory. NeuroImage, 26(2), 513–524. https://doi.org/10.1016/j.neuroimage.2005.02.011.

    CAS  Article  PubMed  Google Scholar 

  47. Langner, R., Steinborn, M. B., Chatterjee, A., Sturm, W., & Willmes, K. (2010). Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychologica, 133(1), 64–72. https://doi.org/10.1016/j.actpsy.2009.10.001.

    Article  PubMed  Google Scholar 

  48. Lee, K. A., Hicks, G., & Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291–298.

    CAS  Article  Google Scholar 

  49. Lewandowski, A. S., Toliver-Sokol, M., & Palermo, T. M. (2011). Evidence-based review of subjective pediatric sleep measures. Journal of Pediatric Psychology, 36(7), 780–793.

    Article  Google Scholar 

  50. Marshall-Gradisnik, S., Huth, T., Chacko, A., Johnston, S., Smith, P., & Staines, D. (2016). Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. The Application of Clinical Genetics, 9, 39–47. https://doi.org/10.2147/tacg.s99405.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Martuzzi, R., Ramani, R., Qiu, M., Shen, X., Papademetris, X., & Constable, R. T. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage, 58(4), 1044–1050. https://doi.org/10.1016/j.neuroimage.2011.06.075.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maruff, P., Falleti, M. G., Collie, A., Darby, D., & McStephen, M. (2005). Fatigue-related impairment in the speed, accuracy and variability of psychomotor performance: Comparison with blood alcohol levels. Journal of Sleep Research, 14(1), 21–27. https://doi.org/10.1111/j.1365-2869.2004.00438.x.

    Article  PubMed  Google Scholar 

  53. Maruff, P., Thomas, E., Cysique, L., Brew, B., Collie, A., Snyder, P., & Pietrzak, R. H. (2009). Validity of the CogState brief battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Archives of Clinical Neuropsychology, 24(2), 165–178. https://doi.org/10.1093/arclin/acp010.

    Article  PubMed  Google Scholar 

  54. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395. https://doi.org/10.1126/science.1131295.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Mathew, S. J., Mao, X., Keegan, K. A., Levine, S. M., Smith, E. L. P., Heier, L. A., . . . Shungu, D. C. (2009). Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: An in vivo 3.0 T (1)H MRS imaging study. NMR in Biomedicine, 22(3), 251–258.

    CAS  Article  Google Scholar 

  56. Michiels, V., & Cluydts, R. (2001). Neuropsychological functioning in chronic fatigue syndrome: A review. Acta Psychiatrica Scandinavica, 103(2), 84–93.

    CAS  Article  Google Scholar 

  57. Morris, G., & Maes, M. (2013). A neuro-immune model of Myalgic encephalomyelitis/chronic fatigue syndrome. Metabolic Brain Disease, 28(4), 523–540. https://doi.org/10.1007/s11011-012-9324-8.

    CAS  Article  PubMed  Google Scholar 

  58. Morris, G., & Maes, M. (2014). Oxidative and Nitrosative stress and immune-inflammatory pathways in patients with Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Current Neuropharmacology, 12(2), 168–185. https://doi.org/10.2174/1570159x11666131120224653.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Morris, G., Berk, M., & Puri, B. K. (2018). A comparison of neuroimaging abnormalities in multiple sclerosis, major depression and chronic fatigue syndrome (Myalgic encephalomyelitis): Is there a common cause? Molecular Neurobiology, 55(4), 3592–3609. https://doi.org/10.1007/s12035-017-0598-z.

    CAS  Article  PubMed  Google Scholar 

  60. Murrough, J. W., Mao, X., Collins, K. A., Kelly, C., Andrade, G., Nestadt, P., . . . Shungu, D. C. (2010). Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: Comparison with major depressive disorder. NMR in Biomedicine, 23(6), 643–650. https://doi.org/10.1002/nbm.1512.

    CAS  Article  PubMed  Google Scholar 

  61. Nakatomi, Y., Mizuno, K., Ishii, A., Wada, Y., Tanaka, M., Tazawa, S., . . . Watanabe, Y. (2014). Neuroinflammation in patients with chronic fatigue syndrome/Myalgic encephalomyelitis: An 11C-(R)-PK11195 PET study. Journal of Nuclear Medicine, 55(6), 945–950. https://doi.org/10.2967/jnumed.113.131045.

    CAS  Article  PubMed  Google Scholar 

  62. Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism, 62(8), 2545–2555. https://doi.org/10.1002/art.27497.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nickerson, L. D., Smith, S. M., Öngür, D., & Beckmann, C. F. (2017). Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Frontiers in Neuroscience, 11, 115–115. https://doi.org/10.3389/fnins.2017.00115.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nijhof, S. L., Maijer, K., Bleijenberg, G., Uiterwaal, C., Kimpen, J., & van de Putte, E. M. (2011). Adolescent chronic fatigue syndrome: Prevalence, incidence, and morbidity. Pediatrics, 127(5), e1169–e1175.

    Article  Google Scholar 

  65. Nijs, J., Meeus, M., Van Oosterwijck, J., Ickmans, K., Moorkens, G., Hans, G., & De Clerck, L. S. (2012). In the mind or in the brain? Scientific evidence for central sensitisation in chronic fatigue syndrome. European Journal of Clinical Investigation, 42(2), 203–212. https://doi.org/10.1111/j.1365-2362.2011.02575.x.

    Article  PubMed  Google Scholar 

  66. Okada, T., Tanaka, M., Kuratsune, H., Watanabe, Y., & Sadato, N. (2004). Mechanisms underlying fatigue: A voxel-based morphometric study of chronic fatigue syndrome. BMC Neurology, 4(1), 14. https://doi.org/10.1186/1471-2377-4-14.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Perrin, R., Embleton, K., Pentreath, V. W., & Jackson, A. (2011). Longitudinal MRI shows no cerebral abnormality in chronic fatigue syndrome. The British Journal of Radiology, 83(989), 419–423.

    Article  Google Scholar 

  68. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018.

    Article  PubMed  Google Scholar 

  69. Puri, B. K., Counsell, S. J., Zaman, R., Main, J., Collins, A. G., Hajnal, J. V., & Davey, N. J. (2002). Relative increase in choline in the occipital cortex in chronic fatigue syndrome. Acta Psychiatrica Scandinavica, 106(3), 224–226.

    CAS  Article  Google Scholar 

  70. Rangel, L., Garralda, M. E., Levin, M., & Roberts, H. (2000). The course of severe chronic fatigue syndrome in childhood. Journal of the Royal Society of Medicine, 93(3), 129–134.

    CAS  Article  Google Scholar 

  71. Rimes, K. A., Goodman, R., Hotopf, M., Wessely, S., Meltzer, H., & Chalder, T. (2007). Incidence, prognosis, and risk factors for fatigue and chronic fatigue syndrome in adolescents: A prospective community study. Pediatrics, 119(3), e603–e609.

    Article  Google Scholar 

  72. Rowe, P. C., Underhill, R. A., Friedman, K. J., Gurwitt, A., Medow, M. S., Schwartz, M. S., . . . Rowe, K. S. (2017). Myalgic encephalomyelitis/chronic fatigue syndrome diagnosis and Management in Young People: A primer. Frontiers in Pediatrics, 5, 121. https://doi.org/10.3389/fped.2017.00121.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shan, Z. Y., Finegan, K., Bhuta, S., Ireland, T., Staines, D. R., Marshall-Gradisnik, S. M., & Barnden, L. R. (2018a). Brain function characteristics of chronic fatigue syndrome: A task fMRI study. NeuroImage: Clinical, 19, 279–286. https://doi.org/10.1016/j.nicl.2018.04.025.

    Article  Google Scholar 

  74. Shan, Z. Y., Finegan, K., Bhuta, S., Ireland, T., Staines, D. R., Marshall-Gradisnik, S. M., & Barnden, L. R. (2018b). Decreased connectivity and increased blood oxygenation level dependent complexity in the default mode network in individuals with chronic fatigue syndrome. Brain Connectivity, 8(1), 33–39. https://doi.org/10.1089/brain.2017.0549.

    Article  PubMed  Google Scholar 

  75. Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148–159. https://doi.org/10.1016/j.dcn.2014.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663. https://doi.org/10.1162/jocn.1997.9.5.648.

    CAS  Article  PubMed  Google Scholar 

  77. Shungu, D. C., Weiduschat, N., Murrough, J. W., Mao, X., Pillemer, S., Dyke, J. P., . . . Mathew, S. J. (2012). Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR in Biomedicine https://doi.org/10.1002/nbm.2772, 25, 1073, 1087.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., . . . Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. https://doi.org/10.1073/pnas.0905267106.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Solé-Padullés, C., Castro-Fornieles, J., de la Serna, E., Calvo, R., Baeza, I., Moya, J., . . . Sugranyes, G. (2016). Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex. Developmental Cognitive Neuroscience, 17, 35–44. https://doi.org/10.1016/j.dcn.2015.11.004.

    Article  PubMed  Google Scholar 

  80. Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545–566.

    CAS  Article  Google Scholar 

  81. Spence, S. H., Barrett, P. M., & Turner, C. M. (2003). Psychometric properties of the Spence Children's anxiety scale with young adolescents. Journal of Anxiety Disorders, 17(6), 605–625.

    Article  Google Scholar 

  82. StataCorp. (2013). Stata statistical software: Release 13. TX, United States: College Station, StataCorp LP.

    Google Scholar 

  83. Storfer-Isser, A., Lebourgeois, M. K., Harsh, J., Tompsett, C. J., & Redline, S. (2013). Psychometric properties of the adolescent sleep hygiene scale. Journal of Sleep Research, 22, 707–716. https://doi.org/10.1111/jsr.12059.

    Article  PubMed  Google Scholar 

  84. Sulheim, D., Fagermoen, E., Sivertsen, O. S., Winger, A., Wyller, V. B., & Oie, M. G. (2015). Cognitive dysfunction in adolescents with chronic fatigue: A cross-sectional study. Archives of Disease in Childhood, 100(9), 838–844. https://doi.org/10.1136/archdischild-2014-306764.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tanaka, M., Sadato, N., Okada, T., Mizuno, K., Sasabe, T., Tanabe, H. C., . . . Watanabe, Y. (2006). Reduced responsiveness is an essential feature of chronic fatigue syndrome: A fMRI study. BMC Neurology, 6, 9–9. https://doi.org/10.1186/1471-2377-6-9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tian, L., Jiang, T., Wang, Y., Zang, Y., He, Y., Liang, M., . . . Zhuo, Y. (2006). Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neuroscience Letters, 400(1–2), 39–43. https://doi.org/10.1016/j.neulet.2006.02.022.

    CAS  Article  PubMed  Google Scholar 

  87. Tseng, B. Y., Gajewski, B. J., & Kluding, P. M. (2010). Reliability, responsiveness, and validity of the visual analog fatigue scale to measure exertion fatigue in people with chronic stroke: A preliminary study. Stroke Res Treat, 2010, 1–7. https://doi.org/10.4061/2010/412964.

    Article  Google Scholar 

  88. Uddin, L. Q., Kelly, A. M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637. https://doi.org/10.1002/hbm.20531.

    Article  PubMed  Google Scholar 

  89. Wechsler, D. (2007). Wechsler individual achievement test - Australian abbreviated (WIAT-II abbreviated) (Second ed.). Sydney: Pearson Clinical.

    Google Scholar 

  90. Wechsler, D. (2011). Wechsler abbreviated scale of intelligence, Second edition (WASI-II. San Antonio, Texas: NCS Pearson.

    Google Scholar 

  91. White, D., Leach, C., Sims, R., Atkinson, M., & Cottrell, D. (1999). Validation of the hospital anxiety and depression scale for use with adolescents. The British Journal of Psychiatry, 175, 452–454.

    CAS  Article  Google Scholar 

  92. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. https://doi.org/10.1089/brain.2012.0073.

    Article  PubMed  Google Scholar 

  93. Wortinger, L. A., Endestad, T., Melinder, A. M. D., Øie, M. G., Sevenius, A., & Bruun Wyller, V. (2016). Aberrant resting-state functional connectivity in the salience network of adolescent chronic fatigue syndrome. PLoS One, 11(7), e0159351. https://doi.org/10.1371/journal.pone.0159351.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Wortinger, L. A., Glenne Øie, M., Endestad, T., & Bruun Wyller, V. (2017). Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome. PLoS One, 12(9), e0184325. https://doi.org/10.1371/journal.pone.0184325.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by ME Research UK (SCIO charity number SCO36942, http://www.meresearch.org.uk/), and supported by the Murdoch Children’s Research Institute, the Royal Children’s Hospital, Department of Paediatrics at The University of Melbourne, and the Victorian Government’s Operational Infrastructure Support Program. The authors have no conflicts of interest to declare. We sincerely thank Cathriona Clarke, Jian Chen, Sarah Arnup, Diana Zannino, the Royal Children’s Hospital CFS Rehabilitation Clinic, and Medical Imaging staff for their assistance with this study. We also thank the research participants and their families for generously donating their time to this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisha K. Josev.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Josev, E.K., Malpas, C.B., Seal, M.L. et al. Resting-state functional connectivity, cognition, and fatigue in response to cognitive exertion: a novel study in adolescents with chronic fatigue syndrome. Brain Imaging and Behavior (2019). https://doi.org/10.1007/s11682-019-00119-2

Download citation

Keywords

  • Chronic fatigue syndrome
  • Resting-state
  • fMRI
  • Cognitive function
  • Fatigue
  • Default mode network
  • Adolescence