Effects of age, sex, and puberty on neural efficiency of cognitive and motor control in adolescents

Abstract

Critical changes in adolescence involve brain cognitive maturation of inhibitory control processes that are essential for a myriad of adult functions. Cognitive control advances into adulthood as there is more flexible integration of component processes, including inhibitory control of conflicting information, overwriting inappropriate response tendencies, and amplifying relevant responses for accurate execution. Using a modified Stroop task with fMRI, we investigated the effects of age, sex, and puberty on brain functional correlates of cognitive and motor control in 87 boys and 91 girls across the adolescent age range. Results revealed dissociable brain systems for cognitive and motor control processes, whereby adolescents flexibly adapted neural responses to control demands. Specifically, when response repetitions facilitated planning-based action selection, frontoparietal-insular regions associated with cognitive control operations were less activated, whereas cortical-pallidal-cerebellar motor regions associated with motor skill acquisition, were more activated. Attenuated middle cingulate cortex activation occurred with older adolescent age for both motor control and cognitive control with automaticity from repetition learning. Sexual dimorphism for control operations occurred in extrastriate cortices involved in visuo-attentional selection: While boys enhanced extrastriate selection processes for motor control, girls activated these regions more for cognitive control. These sex differences were attenuated with more advanced pubertal stage. Together, our findings show that brain cognitive and motor control processes are segregated, demand-specific, more efficient in older adolescents, and differ between sexes relative to pubertal development. Our findings advance our understanding of how distributed brain activity and the neurodevelopment of automaticity enhances cognitive and motor control ability in adolescence.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., & Reiss, A. L. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage., 16(1), 61–75.

    PubMed  Google Scholar 

  2. Akshoomoff, N., Newman, E., Thompson, W. K., McCabe, C., Bloss, C. S., Chang, L., Amaral, D. G., Casey, B. J., Ernst, T. M., Frazier, J. A., Gruen, J. R., Kaufmann, W. E., Kenet, T., Kennedy, D. N., Libiger, O., Mostofsky, S., Murray, S. S., Sowell, E. R., Schork, N., Dale, A. M., & Jernigan, T. L. (2014). The NIH toolbox cognition battery: Results from a large normative developmental sample (ping). Neuropsychology., 28, 1–10.

    PubMed  Google Scholar 

  3. Alarcón, G., Cservenka, A., Fair, D. A., & Nagel, B. J. (2014). Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone. Brain Research, 1593, 40–54.

    PubMed  Google Scholar 

  4. Andrews-Hanna, J. R., Mackiewicz Seghete, K. L., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: Neural underpinnings and relation to self-report behaviors. PLoS One, 6(6), e21598.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Banich, M. T., Crowley, T. J., Thompson, L. L., Jacobson, B. L., Liu, X., Raymond, K. M., & Claus, E. D. (2007). Brain activation during the Stroop task in adolescents with severe substance and conduct problems: A pilot study. Drug and Alcohol Dependence, 90(2–3), 175–182.

    PubMed  PubMed Central  Google Scholar 

  6. Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Effects of working memory demand on neural mechanisms of motor response selection and control. Journal of Cognitive Neuroscience, 25(8), 1235–1248.

    PubMed  PubMed Central  Google Scholar 

  7. Beauchamp, M. H., Dagher, A., Aston, J. A., & Doyon, J. (2003). Dynamic functional changes associated with cognitive skill learning of an adapted version of the tower of London task. Neuroimage., 20(3), 1649–1660.

    CAS  PubMed  Google Scholar 

  8. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia., 31(9), 907–922.

    CAS  PubMed  Google Scholar 

  9. Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews. Neuroscience, 9(4), 267–277 Review.

    CAS  PubMed  Google Scholar 

  10. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., Li, W., Parrish, T. B., Gitelman, D. R., & Mesulam, M. M. (2003). Neural development of selective attention and response inhibition. Neuroimage., 20(2), 737–751.

    PubMed  Google Scholar 

  11. Breukelaar, I. A., Antees, C., Grieve, S. M., Foster, S. L., Gomes, L., Williams, L. M., & Korgaonkar, M. S. (2016). Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study. Human Brain Mapping, 38(2), 631–643.

    PubMed  PubMed Central  Google Scholar 

  12. Brown, S. A., Brumback, T., Tomlinson, K., Cummins, K., Thompson, W. K., Nagel, B. J., De Bellis, M. D., Hooper, S. R., Clark, D. B., Chung, T., Hasler, B. P., Colrain, I. M., Baker, F. C., Prouty, D., Pfefferbaum, A., Sullivan, E. V., Pohl, K. M., Rohlfing, T., Nichols, B. N., Chu, W., & Tapert, S. F. (2015). The National Consortium on alcohol and NeuroDevelopment in adolescence (NCANDA): A multisite study of adolescent development and substance use. Journal of Studies on Alcohol and Drugs, 76(6), 895–908.

    PubMed  PubMed Central  Google Scholar 

  13. Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H215O PET study of Stroop task performance. Neuroimage., 2(4), 264–272.

    CAS  PubMed  Google Scholar 

  14. Carter, C. S., Botvinick, M. M., & Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 10(1), 49–57.

    CAS  PubMed  Google Scholar 

  15. Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9(3), 104–110.

    CAS  PubMed  Google Scholar 

  16. Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience and Biobehavioral Reviews, 33, 631–646.

    PubMed  Google Scholar 

  18. Chen, Z., Lei, X., Ding, C., Li, H., & Chen, A. (2013). The neural mechanisms of semantic and response conflicts: An fMRI study of practice-related effects in the Stroop task. Neuroimage., 66, 577–584.

    PubMed  Google Scholar 

  19. Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. Neuroimage, 54, 1344–1354.

    PubMed  Google Scholar 

  20. Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D’Esposito, M. (2014). Quantifying the reconfiguration of intrinsic networks during working memory. PLoS One, 9(9), e106636.

    PubMed  PubMed Central  Google Scholar 

  21. Comalli, P. E., Wapner, S., & Werner, H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. The Journal of Genetic Psychology, 100, 47–53.

    PubMed  Google Scholar 

  22. Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews. Neuroscience, 13(9), 636–650 Review.

    CAS  PubMed  Google Scholar 

  23. Cservenka, A., Stroup, M. L., Etkin, A., & Nagel, B. J. (2015). The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence. Brain and Cognition, 99, 135–150.

    PubMed  PubMed Central  Google Scholar 

  24. Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugman, S., & Schuhmann, T. (2015). Out of control: Evidence for anterior insula involvement in motor impulsivity and reactive aggression. Social Cognitive and Affective Neuroscience, 10(4), 508–516.

    PubMed  Google Scholar 

  25. Danielmeier, C., Zysset, S., Müsseler, J., & von Cramon, D. Y. (2004). Where action impairs visual encoding: An event-related fMRI study. Brain Research. Cognitive Brain Research, 21(1), 39–48.

    PubMed  Google Scholar 

  26. Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage., 24(2), 539–547.

    PubMed  Google Scholar 

  27. Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 7900–7905.

  28. Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B., Prakash, R. S., Voss, M. W., Graybiel, A. M., Simons, D. J., Fabiani, M., Gratton, G., & Kramer, A. F. (2010). Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 20(11), 2522–2530.

    PubMed  Google Scholar 

  29. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. Neuroimage., 18(1), 42–57.

    PubMed  Google Scholar 

  30. Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S., & Hutchison, K. E. (2009). Marijuana craving in the brain. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13016–13021.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.

    CAS  PubMed  Google Scholar 

  32. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage, 111, 611–621.

    PubMed  Google Scholar 

  34. Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20(7), 1613–1629.

    CAS  PubMed  Google Scholar 

  35. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863.

    CAS  PubMed  Google Scholar 

  36. Giedd, J. N., Raznahan, A., Mills, K. L., & Lenroot, R. K. (2012). Review: Magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 3(1), 19.

    PubMed  PubMed Central  Google Scholar 

  37. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., 3rd, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Exp Psychol Gen., 121(4), 480–506.

    CAS  Google Scholar 

  39. Gur, R. C., Turetsky, B. I., Matsu, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. The Journal of Neuroscience, 19, 4065–4072.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Herting, M. M., Gautam, P., Spielberg, J. M., Kan, E., Dahl, R. E., & Sowell, E. R. (2014). The role of testosterone and estradiol in brain volume changes across adolescence: A longitudinal structural MRI study. Human Brain Mapping, 35(11), 5633–5645.

  41. Herting, M. M., Gautam, P., Spielberg, J. M., Dahl, R. E., & Sowell, E. R. (2015). A longitudinal study: Changes in cortical thickness and surface area during pubertal maturation. PLoS One, 10(3), e0119774.

    PubMed  PubMed Central  Google Scholar 

  42. Huang, B., Hillman, J., Biro, F. M., Ding, L., Dorn, L. D., & Susman, E. J. (2012). Correspondence between gonadal steroid hormone concentrations and secondary sexual characteristics assessed by clinicians, adolescents, and parents. Journal of Research on Adolescence, 22, 381–391.

    PubMed  PubMed Central  Google Scholar 

  43. Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research, 73(4), 527–544.

    PubMed  Google Scholar 

  44. Ito, M. (1993). Synaptic plasticity in the cerebellar cortex and its role in motor learning. The Canadian Journal of Neurological Sciences, 20(Supp 3), S70–S74 Review.

    PubMed  Google Scholar 

  45. Juraska, J. M., & Willing, J. (2017). Pubertal onset as a critical transition for neural development and cognition. Brain Research, 1654(Pt B), 87–94 Review.

    CAS  PubMed  Google Scholar 

  46. Kelly, A. M., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., Margulies, D. S., Castellanos, F. X., & Milham, M. P. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640–657.

    PubMed  Google Scholar 

  47. Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004a). Anterior cingulate conflict monitoring and adjustments in control. Science., 303(5660), 1023–1026.

    CAS  PubMed  Google Scholar 

  48. Kerns, J. G., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004b). Prefrontal cortex guides context-appropriate responding during language production. Neuron., 43(2), 283–291.

    CAS  PubMed  Google Scholar 

  49. Koch, C., & Brown, J. M. (1994). Examining the time course of prime effects on Stroop processing. Perceptual and Motor Skills, 79(1 Pt 2), 675–687.

    CAS  PubMed  Google Scholar 

  50. Koolschijn, P. C., Peper, J. S., & Crone, E. A. (2014). The influence of sex steroids on structural brain maturation in adolescence. PLoS One, 9, e83929.

    PubMed  PubMed Central  Google Scholar 

  51. Koziol, L. F., Budding, D. E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum., 11(2), 505–525 Review.

    PubMed  Google Scholar 

  52. Ladouceur, C. D., Schlund, M. W., & Segreti, A. M. (2018). Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents. Behavioural Brain Research, 338, 109–117.

    PubMed  Google Scholar 

  53. Larrue, V., Celsis, P., Bès, A., & Marc-Vergnes, J. P. (1994). The functional anatomy of attention in humans: Cerebral blood flow changes induced by reading, naming, and the Stroop effect. Journal of Cerebral Blood Flow and Metabolism, 14(6), 958–962.

    CAS  PubMed  Google Scholar 

  54. Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia., 47(3), 663–670.

    PubMed  Google Scholar 

  55. Leisman, G., Braun-Benjamin, O., & Melillo, R. (2014). Cognitive-motor interactions of the basal ganglia in development. Frontiers in Systems Neuroscience, 8, 16.

    PubMed  PubMed Central  Google Scholar 

  56. Li, D., Zucker, N. L., Kragel, P. A., Covington, V. E., & LaBar, K. S. (2017). Adolescent development of insula-dependent interoceptive regulation. Developmental Science, 20(5). https://doi.org/10.1111/desc.12438.

  57. Loeber, R., Burke, J., & Pardini, D. A. (2009). Perspectives on oppositional defiant disorder, conduct disorder, and psychopathic features. Journal of Child Psychology and Psychiatry, 50, 133–142.

    PubMed  Google Scholar 

  58. Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76(3), 697–712.

    PubMed  Google Scholar 

  59. Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., Keshavan, M. S., Genovese, C. R., Eddy, W. F., & Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage., 13(5), 786–793.

    CAS  PubMed  Google Scholar 

  60. Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.

    CAS  PubMed  Google Scholar 

  62. Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13(12), e1002328.

    PubMed  PubMed Central  Google Scholar 

  63. Marusak, H. A., Etkin, A., & Thomason, M. E. (2015). Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth. Neuroimage Clinics, 8, 516–525.

    Google Scholar 

  64. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452.

    CAS  Google Scholar 

  65. McCormick, E. M., & Telzer, E. H. (2018). Contributions of default mode network stability and deactivation to adolescent task engagement. Scientific Reports, 8(1), 18049.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.

    Google Scholar 

  67. Melcher, T., & Gruber, O. (2006). Oddball and incongruity effects during Stroop task performance: A comparative fMRI study on selective attention. Brain Research, 1121(1), 136–149.

    CAS  PubMed  Google Scholar 

  68. Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York: Guilford.

    Google Scholar 

  69. Müller-Oehring, E. M., Kwon, D., Nagel, B. J., Sullivan, E. V., Chu, W., Rohlfing, T., Prouty, D., Nichols, B. N., Poline, J. B., Tapert, S. F., Brown, S. A., Cummins, K., Brumback, T., Colrain, I. M., Baker, F. C., De Bellis, M. D., Voyvodic, J. T., Clark, D. B., Pfefferbaum, A., & Pohl, K. M. (2017). Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cerebral Cortex, 28(3), 1049–1063. https://doi.org/10.1093/cercor/bhx014.

  70. Nguyen, T. V., McCracken, J., Ducharme, S., Botteron, K. N., Mahabir, M., Johnson, W., Israel, M., Evans, A. C., Karama, S., & Brain Development Cooperative Group. (2013). Testosterone-related cortical maturation across childhood and adolescence. Cerebral Cortex, 23(6), 1424–1432.

    PubMed  Google Scholar 

  71. Nguyen, T. V., Gower, P., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., Fonov, V. S., Collins, L., Ducharme, S., & McCracken, J. T. (2016). The developmental relationship between DHEA and visual attention is mediated by structural plasticity of cortico-amygdalar networks. Psychoneuroendocrinology., 70, 122–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, T. V., Lew, J., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., Fonov, V. S., Collins, D. L., Ducharme, S., & McCracken, J. T. (2017). Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function. Psychoneuroendocrinology., 76, 206–217.

    CAS  PubMed  Google Scholar 

  73. Op de Macks, Z. A., Bunge, S. A., Bell, O. N., Wilbrecht, L., Kriegsfeld, L. J., Kayser, A. S., & Dahl, R. E. (2016). Risky decision-making in adolescent girls: The role of pubertal hormones and reward circuitry. Psychoneuroendocrinology., 74, 77–91.

    Google Scholar 

  74. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117–133.

    CAS  PubMed  Google Scholar 

  76. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.

    CAS  PubMed  Google Scholar 

  77. Pfefferbaum, A., Rohlfing, T., Pohl, K. M., Lane, B., Chu, W., Kwon, D., Nolan Nichols, B., Brown, S. A., Tapert, S. F., Cummins, K., Thompson, W. K., Brumback, T., Meloy, M. J., Jernigan, T. L., Dale, A., Colrain, I. M., Baker, F. C., Prouty, D., De Bellis, M. D., Voyvodic, J. T., Clark, D. B., Luna, B., Chung, T., Nagel, B. J., & Sullivan, E. V. (2016). Adolescent development of cortical and White matter structure in the NCANDA sample: Role of sex, ethnicity, puberty, and alcohol drinking. Cerebral Cortex, 26(10), 4101–4121.

    PubMed  Google Scholar 

  78. Pfefferbaum, A., Kwon, D., Brumback, T., Thompson, W. K., Cummins, K., Tapert, S. F., Brown, S. A., Colrain, I. M., Baker, F. C., Prouty, D., De Bellis, M. D., Clark, D. B., Nagel, B. J., Chu, W., Park, S. H., Pohl, K. M., & Sullivan, E. V. (2018). Altered brain developmental trajectories in adolescents after initiating drinking. The American Journal of Psychiatry, 175(4), 370–380.

    PubMed  Google Scholar 

  79. Piekarski, D. J., Boivin, J. R., & Wilbrecht, L. (2017). Ovarian hormones organize the maturation of inhibitory neurotransmission in the frontal cortex at puberty onset in female mice. Current Biology, 27(12), 1735–1745.

    CAS  PubMed  Google Scholar 

  80. Poldrack, R. A. (2002). Neural systems for perceptual skill learning. Behavioral and Cognitive Neuroscience Reviews, 1(1), 76–83 Review.

    PubMed  Google Scholar 

  81. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. The Journal of Neuroscience, 25(22), 5356–5364.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748 Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Purmann, S., & Pollmann, S. (2015). Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 9, 88.

    PubMed  PubMed Central  Google Scholar 

  84. Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12.

    PubMed  PubMed Central  Google Scholar 

  85. Rainer, G., Lee, H., & Logothetis, N. K. (2004). The effect of learning on the function of monkey extrastriate visual cortex. PLoS Biology, 2(2), E44.

    PubMed  PubMed Central  Google Scholar 

  86. Randerath, J., Valyear, K. F., Philip, B. A., & Frey, S. H. (2017). Contributions of the parietal cortex to increased efficiency of planning-based action selection. Neuropsychologia., 105, 135–143.

    PubMed  PubMed Central  Google Scholar 

  87. Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., Pipitone, J., Chakravarty, M. M., & Giedd, J. N. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1592–1597.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28(11), 1163–1177.

    PubMed  PubMed Central  Google Scholar 

  89. Rubia, K., Lim, L., Ecker, C., Halari, R., Giampietro, V., Simmons, A., Brammer, M., & Smith, A. (2013). Effects of age and gender on neural networks of motor response inhibition: From adolescence to mid-adulthood. Neuroimage, 83, 690–703.

    PubMed  Google Scholar 

  90. Sali, A. W., Courtney, S. M., & Yantis, S. (2016). Spontaneous fluctuations in the flexible control of covert attention. The Journal of Neuroscience, 36(2), 445–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73(1–3), 1–20.

    CAS  PubMed  Google Scholar 

  92. Salo, R., Henik, A., & Robertson, L. C. (2001). Interpreting Stroop interference: An analysis of differences between task versions. Neuropsychology., 15(4), 462–471.

    CAS  PubMed  Google Scholar 

  93. Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., Hopson, R., Jackson, C., Prabhakaran, K., Bilker, W. B., Calkins, M. E., Loughead, J., Smith, A., Roalf, D. R., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. C., & Gur, R. E. (2013). Functional maturation of the executive system during adolescence. The Journal of Neuroscience, 33(41), 16249–16261.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Satterthwaite, T. D., Vandekar, S., Wolf, D. H., Ruparel, K., Roalf, D. R., Jackson, C., Elliott, M. A., Bilker, W. B., Calkins, M. E., Prabhakaran, K., Davatzikos, C., Hakonarson, H., Gur, R. E., & Gur, R. C. (2014). Sex differences in the effect of puberty on hippocampal morphology. Journal of the American Academy of Child and Adolescent Psychiatry, 53(3), 341–350.e1.

    PubMed  Google Scholar 

  95. Satterthwaite, T. D., Wolf, D. H., Roalf, D. R., Ruparel, K., Erus, G., Vandekar, S., Gennatas, E. D., Elliott, M. A., Smith, A., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. E., & Gur, R. C. (2015). Linked sex differences in cognition and functional connectivity in youth. Cerebral Cortex, 25(9), 2383–2394.

    PubMed  Google Scholar 

  96. Savic, I., Frisen, L., Manzouri, A., Nordenstrom, A., & Lindén Hirschberg, A. (2017). Role of testosterone and Y chromosome genes for the masculinization of the human brain. Human Brain Mapping, 38(4), 1801–1814.

    PubMed  PubMed Central  Google Scholar 

  97. Scheinost, D., Finn, E. S., Tokoglu, F., Shen, X., Papademetris, X., Hampson, M., & Constable, R. T. (2015). Sex differences in normal age trajectories of functional brain networks. Human Brain Mapping, 36(4), 1524–1535.

    PubMed  Google Scholar 

  98. Schmidt, J. R., & Weissman, D. H. (2016). Congruency sequence effects and previous response times: Conflict adaptation or temporal learning? Psychological Research, 80(4), 590–607.

    PubMed  Google Scholar 

  99. Schramm-Sapyta, N. L., Walker, Q. D., Caster, J. M., Levin, E. D., & Kuhn, C. M. (2009). Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology, 206(1), 1–21 Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schroeter, M. L., Zysset, S., Wahl, M., & von Cramon, D. Y. (2004). Prefrontal activation due to Stroop interference increases during development--an event-related fNIRS study. Neuroimage., 23(4), 1317–1325.

    PubMed  Google Scholar 

  101. Schulte, T., Müller-Oehring, E. M., Chanraud, S., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2011). Age-related reorganization of functional networks for successful conflict resolution: A combined functional and structural MRI study. Neurobiology of Aging, 32(11), 2075–2090.

    PubMed  Google Scholar 

  102. Schulte, T., Müller-Oehring, E. M., Sullivan, E. V., & Pfefferbaum, A. (2012). Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biological Psychiatry, 71(3), 269–278.

    PubMed  Google Scholar 

  103. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Selmeczy, D., Fandakova, Y., Grimm, K. J., Bunge, S. A., & Ghetti, S. (2018). Longitudinal trajectories of hippocampal and prefrontal contributions to episodic retrieval: Effects of age and puberty. Developmental Cognitive Neuroscience, S1878-9293(18), 30132–30134.

    Google Scholar 

  105. Shen, X. (2005). Sex differences in perceptual processing: Performance on the color-kanji stroop task of visual stimuli. The International Journal of Neuroscience, 115, 1631–1641.

    PubMed  Google Scholar 

  106. Simmonds, D. J., Hallquist, M. N., & Luna, B. (2017). Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. Neuroimage, 157, 695–704.

    PubMed  PubMed Central  Google Scholar 

  107. Spielberg, J. M., Galarce, E. M., Ladouceur, C. D., McMakin, D. L., Olino, T. M., Forbes, E. E., Silk, J. S., Ryan, N. D., & Dahl, R. E. (2015). Adolescent development of inhibition as a function of SES and gender: Converging evidence from behavior and fMRI. Human Brain Mapping, 36(8), 3194–3203.

    PubMed  PubMed Central  Google Scholar 

  108. Squeglia, L. M., McKenna, B. S., Jacobus, J., Castro, N., Sorg, S. F., & Tapert, S. F. (2013). BOLD response to working memory not related to cortical thickness during early adolescence. Brain Research, 1537, 59–68.

    CAS  PubMed  Google Scholar 

  109. Stevens, M. C. (2016). The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neuroscience and Biobehavioral Reviews, 70, 13–32.

    PubMed  Google Scholar 

  110. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 12, 643–662.

    Google Scholar 

  111. Supekar, K., & Menon, V. (2012). Developmental maturation of dynamic causal control signals in higher-order cognition: A neurocognitive network model. PLoS Computational Biology, 8(2), e1002374.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 41(10), 1231–1238.

    PubMed  Google Scholar 

  113. Taylor, K. S., Seminowicz, D. A., & Davis, K. D. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30(9), 2731–2745.

    PubMed  PubMed Central  Google Scholar 

  114. Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2006). Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 tesla. Human Brain Mapping, 27(8), 694–705.

    PubMed  PubMed Central  Google Scholar 

  115. Tremel, J. J., Laurent, P. A., Wolk, D. A., Wheeler, M. E., & Fiez, J. A. (2016). Neural signatures of experience-based improvements in deterministic decision-making. Behavioural Brain Research, 315, 51–65.

    PubMed  PubMed Central  Google Scholar 

  116. Tyborowska, A., Volman, I., Smeekens, S., Toni, I., & Roelofs, K. (2016). Testosterone during puberty shifts emotional control from Pulvinar to anterior prefrontal cortex. The Journal of Neuroscience, 36(23), 6156–6164.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: it's not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5(4), 467–472.

    Google Scholar 

  118. van Duijvenvoorde, A. C. (2016). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience and Biobehavioral Reviews, 70, 135–147.

    PubMed  Google Scholar 

  119. Veroude, K., Jolles, J., Croiset, G., & Krabbendam, L. (2013). Changes in neural mechanisms of cognitive control during the transition from late adolescence to young adulthood. Developmental Cognitive Neuroscience, 5, 63–70.

    PubMed  PubMed Central  Google Scholar 

  120. Vogel, A. C., Power, J. D., Petersen, S. E., & Schlaggar, B. L. (2010). Development of the Brain’s functional network architecture. Neuropsychology Review, 20(4), 362–375.

    PubMed  Google Scholar 

  121. White, H. R., Marmorstein, N. R., Crews, F. T., Bates, M. E., Mun, E. Y., & Loeber, R. (2011). Associations between heavy drinking and changes in impulsive behavior among adolescent boys. Alcoholism, Clinical and Experimental Research, 35(2), 295–303.

    PubMed  Google Scholar 

  122. Wierenga, L. M., Bos, M. G. N., Schreuders, E., Vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology., 91, 105–114.

    CAS  PubMed  Google Scholar 

  123. Wilkinson, G. S., & Robertson, G. J. (2006). Wide range achievement test (WRAT4). Psychological assessment resources. In Lutz.

    Google Scholar 

  124. Wu, T., & Hallett, M. (2005). The influence of normal human ageing on automatic movements. The Journal of Physiology, 562(Pt 2), 605–615.

    CAS  PubMed  Google Scholar 

  125. Zhao, T., Cao, M., Niu, H., Zuo, X. N., Evans, A., He, Y., Dong, Q., & Shu, N. (2015). Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Human Brain Mapping, 36(10), 3777–3792.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Institute on Alcohol Abuse and Alcoholism with co-funding from the National Institute on Drug Abuse, the National Institute of Mental Health, the National Institute of Health Office of the Director, the National Institute of Child Health and Human Development, and the Office of the Director, National Institutes of Health [NCANDA grant numbers: AA021696 (IMC + FCB), AA021695 (SAB + SFT), AA021692 (SFT), AA021697 (AP + KMP)]. Additional funding was provided by NIAAA grant number AA010723 (EVS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tilman Schulte.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest with the reported data or their interpretation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 393 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulte, T., Hong, JY., Sullivan, E.V. et al. Effects of age, sex, and puberty on neural efficiency of cognitive and motor control in adolescents. Brain Imaging and Behavior 14, 1089–1107 (2020). https://doi.org/10.1007/s11682-019-00075-x

Download citation

Keywords

  • Functional MRI
  • Executive control
  • Age and gender
  • Puberty
  • Automaticity of behavior