Skip to main content

Advertisement

Log in

Neural processing of odor-associated words: an fMRI study in patients with acquired olfactory loss

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Perception of olfactory information is mediated by both bottom-up (from molecules to perception) and top-down (e.g. cross-modal associative learning) processes. Acquired olfactory loss is a frequent disorder which is typically due to alterations in the bottom-up pathway. However, it is unclear how the top-down modulation of olfactory processing is affected by olfactory impairment. Our study aimed to investigate the top-down olfactory processing in patients with acquired olfactory loss and participants with normal olfaction. Using functional MRI, brain responses from 14 patients and 16 healthy controls were assessed during a task of expectation and reading of words with strong olfactory associations (OW) (e.g. “Rose”) and control words with little to no olfactory associations (CW) (e.g. “Door”). The expectation but not reading of the OW was associated with stronger neural activation in the angular gyrus and the inferior frontal gyrus extending to insula in the group of patients. During OW reading, the brain activation in the left OFC and right putamen was negatively correlated with odor identification score in patient and control groups, respectively. In addition, the duration of olfactory loss among patients was positively associated with activation in the left putamen during OW expectation. Taken together, these findings suggest an enhanced top-down olfactory modulation in patients with olfactory loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arshamian, A., Iannilli, E., Gerber, J. C., Willander, J., Persson, J., Seo, H. S., Hummel, T., & Larsson, M. (2013). The functional neuroanatomy of odor evoked autobiographical memories cued by odors and words. Neuropsychologia, 51, 123–131.

    PubMed  Google Scholar 

  • Barros-Loscertales, A., Gonzalez, J., Pulvermuller, F., Ventura-Campos, N., Bustamante, J. C., Costumero, V., Parcet, M. A., & Avila, C. (2012). Reading salt activates gustatory brain regions: fMRI evidence for semantic grounding in a novel sensory modality. Cerebral Cortex, 22, 2554–2563.

    PubMed  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.

    PubMed  Google Scholar 

  • Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. Neuroimage, 71, 175–186.

    PubMed  PubMed Central  Google Scholar 

  • Bonnici, H. M., Richter, F. R., Yazar, Y., & Simons, J. S. (2016). Multimodal feature integration in the angular gyrus during episodic and semantic retrieval. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36, 5462–5471.

    CAS  Google Scholar 

  • Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.

    CAS  PubMed  Google Scholar 

  • Cerf-Ducastel, B., & Murphy, C. (2003). FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Research, 986, 39–53.

    CAS  PubMed  Google Scholar 

  • Cerf-Ducastel, B., & Murphy, C. (2006). Neural substrates of cross-modal olfactory recognition memory: an fMRI study. Neuroimage, 31, 386–396.

    PubMed  Google Scholar 

  • de Araujo, I. E., Rolls, E. T., Velazco, M. I., Margot, C., & Cayeux, I. (2005). Cognitive modulation of olfactory processing. Neuron, 46, 671–679.

    PubMed  Google Scholar 

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113, 7900–7905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fjaeldstad, A., Fernandes, H. M., Van Hartevelt, T. J., Gleesborg, C., Moller, A., Ovesen, T., & Kringelbach, M. L. (2017). Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Scientific Reports, 7, 42534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flohr, E. L., Arshamian, A., Wieser, M. J., Hummel, C., Larsson, M., Muhlberger, A., & Hummel, T. (2014). The fate of the inner nose: odor imagery in patients with olfactory loss. Neuroscience, 268, 118–127.

    CAS  PubMed  Google Scholar 

  • Fournel, A., Sezille, C., Licon, C. C., Sinding, C., Gerber, J., Ferdenzi, C., Hummel, T., & Bensafi, M. (2017). Learning to name smells increases activity in heteromodal semantic areas. Human Brain Mapping, 38, 5958–5969.

    PubMed  PubMed Central  Google Scholar 

  • Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews. Neuroscience, 14, 350–363.

    CAS  PubMed  Google Scholar 

  • Gonzalez, J., Barros-Loscertales, A., Pulvermuller, F., Meseguer, V., Sanjuan, A., Belloch, V., & Avila, C. (2006). Reading cinnamon activates olfactory brain regions. Neuroimage, 32, 906–912.

    PubMed  Google Scholar 

  • Gottfried, J. A., O'Doherty, J., & Dolan, R. J. (2002). Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 22, 10829–10837.

    CAS  Google Scholar 

  • Gottfried, J. A., Smith, A. P., Rugg, M. D., & Dolan, R. J. (2004). Remembrance of odors past: human olfactory cortex in cross-modal recognition memory. Neuron, 42, 687–695.

    CAS  PubMed  Google Scholar 

  • Gudziol, H., Stark, D., Lehnich, H., Bitter, T., & Guntinas-Lichius, O. (2010). Hyposmics have less evoked respiratory orienting reactions than normosmics. Laryngo-Rhino-Otologie, 89, 477–482.

    PubMed  Google Scholar 

  • Han, P., Winkler, N., Hummel, C., Hahner, A., Gerber, J., & Hummel, T. (2018). Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. Journal of Neurology, 265, 2322–2332.

    PubMed  Google Scholar 

  • Haslinger, B., Erhard, P., Altenmuller, E., Hennenlotter, A., Schwaiger, M., Grafin von Einsiedel, H., Rummeny, E., Conrad, B., & Ceballos-Baumann, A. O. (2004). Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Human Brain Mapping, 22, 206–215.

    PubMed  PubMed Central  Google Scholar 

  • Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    CAS  PubMed  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: Wiley and Sons.

    Google Scholar 

  • Hedner, M., Larsson, M., Arnold, N., Zucco, G. M., & Hummel, T. (2010). Cognitive factors in odor detection, odor discrimination, and odor identification tasks. Journal of Clinical and Experimental Neuropsychology, 32, 1062–1067.

    PubMed  Google Scholar 

  • Herz, R. S. (2005). Odor-associative learning and emotion: effects on perception and behavior. Chemical Senses, 30(Suppl 1), i250–i251.

    PubMed  Google Scholar 

  • Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia, 44, 2547–2557.

    PubMed  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.

    CAS  PubMed  Google Scholar 

  • Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E., & Kobal, G. (1997). Sniffin' Sticks': olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chemical Senses, 22, 39–52.

    CAS  PubMed  Google Scholar 

  • Hummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the "Sniffin' sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. European archives of oto-rhino-laryngology : Official Journal of the European Federation of Oto-Rhino-Laryngological Societies, 264, 237–243.

    CAS  Google Scholar 

  • Hummel, T., Fliessbach, K., Abele, M., Okulla, T., Reden, J., Reichmann, H., Wullner, U., & Haehner, A. (2010). Olfactory FMRI in patients with Parkinson's disease. Frontiers in Integrative Neuroscience, 4, 125.

    PubMed  PubMed Central  Google Scholar 

  • Hummel, T., Hummel, C., & Welge-Luessen, A. (2013). Assessment of olfaction and gustation. In A. Welge-Luessen & T. Hummel (Eds.), Management of smell and taste disorders: A practical guide for clinicians (1st ed., pp. 58–75). Stuttgart: Thieme.

    Google Scholar 

  • Kareken, D. A., Sabri, M., Radnovich, A. J., Claus, E., Foresman, B., Hector, D., & Hutchins, G. D. (2004). Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. Neuroimage, 22, 456–465.

    PubMed  Google Scholar 

  • Kjelvik, G., Evensmoen, H. R., Brezova, V., & Haberg, A. K. (2012). The human brain representation of odor identification. Journal of Neurophysiology, 108, 645–657.

    PubMed  Google Scholar 

  • Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure & Function, 214, 519–534.

    Google Scholar 

  • Lehn, H., Kjonigsen, L. J., Kjelvik, G., & Haberg, A. K. (2013). Hippocampal involvement in retrieval of odor vs. object memories. Hippocampus, 23, 122–128.

    PubMed  Google Scholar 

  • Levy, L. M., Henkin, R. I., Lin, C. S., Hutter, A., & Schellinger, D. (1999). Odor memory induces brain activation as measured by functional MRI. Journal of Computer Assisted Tomography, 23, 487–498.

    CAS  PubMed  Google Scholar 

  • Li, Y., Long, J., Huang, B., Yu, T., Wu, W., Liu, Y., Liang, C., & Sun, P. (2015). Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception. Cerebral Cortex, 25, 384–395.

    PubMed  Google Scholar 

  • Lundstrom, J. N., Boesveldt, S., & Albrecht, J. (2011). Central processing of the chemical senses: an overview. ACS Chemical Neuroscience, 2, 5–16.

    CAS  PubMed  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19, 1233–1239.

    PubMed  Google Scholar 

  • Marks, L. E. (2003). The role of attention in chemosensation. Food Quality and Preference, 14, 147–155.

    Google Scholar 

  • Moss, H., Abdallah, S., Fletcher, P., Bright, P., Pilgrim, L., Acres, K., & Tyler, L. (2005). Selecting among competing alternatives: selection and retrieval in the left inferior frontal gyrus. Cerebral Cortex, 15, 1723–1735.

    CAS  PubMed  Google Scholar 

  • Olofsson, J. K., Rogalski, E., Harrison, T., Mesulam, M. M., & Gottfried, J. A. (2013). A cortical pathway to olfactory naming: evidence from primary progressive aphasia. Brain : a Journal of Neurology, 136, 1245–1259.

    Google Scholar 

  • Olofsson, J. K., Hurley, R. S., Bowman, N. E., Bao, X., Mesulam, M. M., & Gottfried, J. A. (2014). A designated odor-language integration system in the human brain. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 34, 14864–14873.

    CAS  Google Scholar 

  • Osterbauer, R. A., Matthews, P. M., Jenkinson, M., Beckmann, C. F., Hansen, P. C., & Calvert, G. A. (2005). Color of scents: chromatic stimuli modulate odor responses in the human brain. Journal of Neurophysiology, 93, 3434–3441.

    PubMed  Google Scholar 

  • Pellegrino, R., Hahner, A., Bojanowski, V., Hummel, C., Gerber, J., & Hummel, T. (2016). Olfactory function in patients with hyposmia compared to healthy subjects - an fMRI study. Rhinology, 54, 374–381.

    CAS  PubMed  Google Scholar 

  • Plailly, J., Delon-Martin, C., & Royet, J. P. (2012). Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Human Brain Mapping, 33, 224–234.

    PubMed  Google Scholar 

  • Pomp, J., Bestgen, A. K., Schulze, P., Muller, C. J., Citron, F. M. M., Suchan, B., & Kuchinke, L. (2018). Lexical olfaction recruits olfactory orbitofrontal cortex in metaphorical and literal contexts. Brain and Language, 179, 11–21.

    PubMed  Google Scholar 

  • Price, A. R., Peelle, J. E., Bonner, M. F., Grossman, M., & Hamilton, R. H. (2016). Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 36, 3829–3838.

    CAS  Google Scholar 

  • Ragland, J. D., Moelter, S. T., Bhati, M. T., Valdez, J. N., Kohler, C. G., Siegel, S. J., Gur, R. C., & Gur, R. E. (2008). Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophrenia Research, 99, 312–323.

    CAS  PubMed  Google Scholar 

  • Rolls, E. T. (2011). Chemosensory learning in the cortex. Frontiers in Systems Neuroscience, 5, 78.

    PubMed  PubMed Central  Google Scholar 

  • Ross, J. S., Tkach, J., Ruggieri, P. M., Lieber, M., & Lapresto, E. (2003). The mind’s eye: functional MR imaging evaluation of golf motor imagery. American Journal of Neuroradiology, 24, 1036–1044.

    PubMed  Google Scholar 

  • Royet, J. P., Delon-Martin, C., & Plailly, J. (2013). Odor mental imagery in non-experts in odors: a paradox? Frontiers in Human Neuroscience, 7, 87.

    PubMed  PubMed Central  Google Scholar 

  • Saive, A. L., Royet, J. P., & Plailly, J. (2014). A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches. Frontiers in Behavioral Neuroscience, 8, 240.

    PubMed  PubMed Central  Google Scholar 

  • Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist : a Review Journal Bringing Neurobiology, Neurology and Psychiatry, 19, 43–61.

    Google Scholar 

  • Seubert, J., Freiherr, J., Djordjevic, J., & Lundstrom, J. N. (2013). Statistical localization of human olfactory cortex. Neuroimage, 66, 333–342.

    PubMed  Google Scholar 

  • Sijben, R., Hoffmann-Hensel, S. M., Rodriguez-Raecke, R., Haarmeier, T., & Freiherr, J. (2018). Semantic congruence alters functional connectivity during olfactory-visual perception. Chemical Senses, 43, 599–610.

    PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Desmond, J. E., Glover, G. H., Goode, R. L., Sullivan, E. V., & Gabrieli, J. D. (1998). Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature, 392, 282–286.

    CAS  PubMed  Google Scholar 

  • Sorokowska, A., Drechsler, E., Karwowski, M., & Hummel, T. (2017). Effects of olfactory training: a meta-analysis. Rhinology, 55, 17–26.

    CAS  PubMed  Google Scholar 

  • Tempere, S., Hamtat, M. L., Bougeant, J. C., de Revel, G., & Sicard, G. (2014). Learning odors: the impact of visual and olfactory mental imagery training on odor perception. Journal of Sensory Studies, 29, 435–449.

    Google Scholar 

  • Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., & Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17, 273–281.

    PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273–289.

    CAS  PubMed  Google Scholar 

  • Veldhuizen, M. G., & Small, D. M. (2011). Modality-specific neural effects of selective attention to taste and odor. Chemical Senses, 36, 747–760.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J., Eslinger, P. J., Doty, R. L., Zimmerman, E. K., Grunfeld, R., Sun, X., Meadowcroft, M. D., Connor, J. R., Price, J. L., Smith, M. B., & Yang, Q. X. (2010). Olfactory deficit detected by fMRI in early Alzheimer's disease. Brain Research, 1357, 184–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelano, C., Bensafi, M., Porter, J., Mainland, J., Johnson, B., Bremner, E., Telles, C., Khan, R., & Sobel, N. (2005). Attentional modulation in human primary olfactory cortex. Nature Neuroscience, 8, 114–120.

    CAS  PubMed  Google Scholar 

  • Zelano, C., Mohanty, A., & Gottfried, J. A. (2011). Olfactory predictive codes and stimulus templates in piriform cortex. Neuron, 72, 178–187.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (DFG 441/18–1 granted to T.H.) and by the Swedish Foundation for Humanities and Social Sciences (M14–0375:1 granted to M. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study were in accordance with the Declaration of Helsinki (1964) and its later amendments, approved by the Ethics Committee of the Medical Faculty Carl Gustav Carus at the “Technische Universität Dresden” (EK363082016).

Informed consent

Written informed consent was obtained from all participants included in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Croy, I., Raue, C. et al. Neural processing of odor-associated words: an fMRI study in patients with acquired olfactory loss. Brain Imaging and Behavior 14, 1164–1174 (2020). https://doi.org/10.1007/s11682-019-00062-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00062-2

Keywords

Navigation