Skip to main content

Advertisement

Log in

Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson’s disease

  • REVIEW ARTICLE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Changes in reward circuitry have been studied extensively in substance and behavioural addictions. However, comparatively little is known about the neurobiology underlying impulse control disorders (ICDs) in Parkinson’s disease, which show roughly similar risk factors and behavioural presentations to both stimulant and behavioural addictions. ICDs occur in a subset of susceptible patients with Parkinson’s disease (PD) following intake of dopamine replacement therapy (DRT). These behavioural disorders often have debilitating effects on a patient’s quality of life and increase caregiver burden. This comprehensive review examined findings of 40 neuroimaging studies of ICDs in PD to determine (a) whether there are putative neurobiological commonalities between traditional substance and behavioural addictions and DRT-induced ICD in PD and (b) opportunities for future studies to advance current neurobiological understanding of the phenomenon. Results revealed that strikingly similar (a) deficits in dopaminergic receptor expression, (b) connectivity changes in corticostriatal circuitry and (c) neural responses to cue exposure are observed in both ICDs in PD and addictive disorders. These findings point to the value of adopting a transdiagnostic approach when studying addicted populations and pave the way for demystifying this peculiar, often-devastating phenomenon in PD that has so far proven extremely difficult to treat and predict with any precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinoff, B. (2004). Neurobiological processes in drug reward and addiction. Harvard Review of Psychiatry, 12, 305–320.

    PubMed  PubMed Central  Google Scholar 

  • Ambermoon, P., Carter, A., Hall, W., Dissanayaka, N., & O'Sullivan, J. (2011). Compulsive use of dopamine replacement therapy: a model for stimulant drug addiction? Addiction, 107, 241–247.

    PubMed  Google Scholar 

  • American Psychiatric Association. (2010). Diagnostic and statistical manual of mental disorders (DSM–5). Arlington: American Psychiatric Association Publishing.

    Google Scholar 

  • Arias-Carrion, O., Stamelou, M., Murillo-Rodriguez, E., Menedez-Gonzalez, M., & Poppel, E. (2010). Dopaminergic reward system: a short integrative review. International Archives of Medicine, 3, 24.

    PubMed  PubMed Central  Google Scholar 

  • Beaulieu-Boire, I., & Lang, A. (2015). Behavioural effects of levodopa. Movement Disorders, 30, 90–102.

    CAS  PubMed  Google Scholar 

  • Biundo, R., Formento-Dojot, P., Facchini, S., Vallelunga, A., Ghezzo, L., Foscolo, L., Meneghello, F., & Antonini, A. (2011). Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. Journal of the Neurological Sciences, 310(1–2), 64–69.

  • Biundo, R., Weis, L., Fachini, S., Formento-Dojot, P., Vallelunga, A., Pilleri, M., Weintraub, D., et al. (2015). Patterns of cortical thickness associated with impulse control disorders in Parkinson’s disease. Movement Disorders, 30, 688–695.

    PubMed  Google Scholar 

  • Blasi, G., Goldberg, T. E., Weickert, T., Das, S., Kohn, P., Zoltick, B., Bertolino, A., Callicott, J. H., Weinberger, D. R., & Mattay, V. S. (2006). Brain regions underlying response inhibition and inference monitoring and suppression. The European Journal of Neuroscience, 23(6), 1658–1664.

    PubMed  Google Scholar 

  • Blum, K., Wood, R. C., Braverman, E. R., Chen, T. J., & Sheridan, P. J. (1995). The D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Functional Neurology, 10, 37–44.

    CAS  PubMed  Google Scholar 

  • Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., Lubar, J. O., Chen, T. J. H., & Comings, D. E. (2000). Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviours. Journal of Psychoactive Drugs, 32, 1–112.

    Google Scholar 

  • Brody, A., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. J., Ho, M. L., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59, 1162–1172.

    PubMed  Google Scholar 

  • Brody, A. L., Maldelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., Scheibal, D., et al. (2007). Neural substrates of resisting craving during cigarette cue exposure. Biological Psychiatry, 62(6), 642–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckholtz, J. W. (2015). Social norms, self-control, and the value of antisocial behavior. Current Opinion in Behavioral Sciences 3, 122–129.

  • Canu, E., Agosta, D., Markovic, V., Petrovic, I., Stankovic, I., Imperiale, F., Stojkovic, T., et al. (2017). White matter tract alterations in Parkinson’s disease patients with punding. Parkinsonism & Related Disorders, 43, 85–91.

    Google Scholar 

  • Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.

    PubMed  Google Scholar 

  • Carriere, N., Lopes, R., Defebvre, L., Delmaire, C., & Dujardin, K. (2015). Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology, 84, 2116–2123.

    CAS  PubMed  Google Scholar 

  • Cerasa, A., Salsone, M., Nigro, S., Chiriaco, C., Donzuso, G., Bosco, D., Vasta, R., & Quattrone, A. (2014). Cortical volume and folding abnormalities in Parkinson’s disease patients with pathological gambling. Parkinsonism & Related Disorders, 20, 1209–1214.

    Google Scholar 

  • Cilia, R., Siri, C., Marotta, G., Isaias, I. U., De Gaspari, D., Canesi, M., Pezzoli, G., et al. (2008). Functional abnormalities underlying pathological gambling in Parkinson disease. Archives of Neurology, 65, 1604–1611.

    PubMed  Google Scholar 

  • Cilia, R., Ko, J. H., Cho, S. S., van Eimeren, T., Marotta, G., Pellecchia, G., Pezzoli, G., Antonini, A., & Strafella, A. P. (2010). Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiology of Disease, 39(1), 98–104.

  • Classen, D. O., Stark, A. J., Spears, C. A., Petersen, K. J., van Wouwe, N. C., Kessler, R. M., Zald, D. H., et al. (2017). Mesocorticolimbic hemodynamic response in Parkinson’s disease patients with compulsive behaviours. Movement Disorders, 32, 1574–1583.

    Google Scholar 

  • Claus, E. D., Ewing, S. W. F., Filbey, F. M., Sabbineni, A., & Hutchison, K. E. (2011). Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology, 36, 2086–2096.

    PubMed  PubMed Central  Google Scholar 

  • Dawson, A., Dissanayaka, N. N., Evans, A., Verdejo-Garcia, A., Chong, T. T. C., et al. (2018). Neurocognitive correlates of medication-induced addictive behaviours in Parkinoson’s disease: a systematic review. European Neuropsychopharmacology (In press), 28, 561–578.

    CAS  PubMed  Google Scholar 

  • Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., Brooks, D. J., Lees, A. J., & Piccini, P. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59, 852–858.

    CAS  PubMed  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489.

    CAS  PubMed  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience and Biobehavioural Reviews, 37(9), 1946–1954.

    Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology 67(1), 23–50.

  • Fedota, J., & Stein, E. (2015). Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Annals of the New York Academy of Sciences, 1349, 64–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703):1940–3.

  • Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical applications. Nature Reviews. Neuroscience, 12, 652–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halldin, C., Farde, L., Hogberg, T., Mohell, N., Hall, H., Suhara, T., Karlsson, P., et al. (1995). Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. Journal of Nuclear Medicine, 36, 1275–1281.

    CAS  PubMed  Google Scholar 

  • Imperiale, F., Agosta, F., Canu, E., Markovic, V., Inuggi, A., Jecmenica-Lukic, M., Tomic, A., Copetti, M., Basaia, S., Kostic, V. S., & Filippi, M. (2018). Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson’s disease. Molecular Psychiatry, 23, 459–466.

    CAS  PubMed  Google Scholar 

  • Joutsa, J., Martikainen, K., Nimela, S., Johansson, J., Forsback, S., Rinne, J. O., Kaasinen, V. (2012). Increased medial orbitofrontal [18F]fluorodopa uptake in Parkinsonian impulse control disorders. Movement Disorders, 27(6):778–82.

  • Kelley, A., & Berridge, K. (2002). The neuroscience of natural rewards: relevance to addictive drugs. The Journal of Neuroscience, 22, 3306–3311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King, A., McNamara, P., Angstadt, M., & Phan, K. L. (2010). Neural substrates of alcohol-induces smoking urge in heavy drinking non-daily smokers. Neuropsychopharmacology, 35, 692–701.

    CAS  PubMed  Google Scholar 

  • Lee, J. Y., Seo, S. H., Kim, Y. K., Hb, Y., Kim, Y. E., Song, I. C., Lee, J. S., et al. (2014). Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 23–30.

    CAS  PubMed  Google Scholar 

  • Liang, X., He, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Interactions between the salience and default-mode networks are disrupted in cocaine addiction. The Journal of Neuroscience, 35, 8081–8090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Limbrick-Oldfield, E. H., Mick, I., Cocks, R. E., McGonigle, J., Sharman, S. P., Goldstone, A. P., & Stokes, P. R. A. (2017). Neural substrates of cue reactivity and craving in gambling disorder. Translational Psychiatry, 7, 992.

    Google Scholar 

  • Linden, D. (2016). Neuoimaging and neurophysiologiy in psychiatry. Oxford: Oxford University Press.

  • Loane, C., Wu, K., O’Sullivan, S. S., Lawrence, A. D., Woodhead, Z., Lees, A. J., Piccini, P., et al. (2015). Psychogenic and neural visual-cue response in PD dopamine dysregulation syndrome. Parkinsonism & Related Disorders, 21, 1336–1341.

    Google Scholar 

  • Makris, N., Gasic, G., Kennedy, D. N., Hodge, S. N., Kaiser, J. R., Lee, M. J., Kim, B. W., et al. (2008). Cortical thickness abnormalities in cocaine addiction – a reflection of both drug use and a pre-existing disposition to drug abuse? Neuron, 60, 174–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markovic, V., Agosta, F., Canu, E., Inuggi, A., Petrovic, I., Stankovic, I., Imperiale, F., Stojkovic, T., Kostic, V. S., & Filippi, M. (2017). Role of habenula and amygdala dysfunction in Parkinson disease patients with punding. Neurology, 88, 2207–2215.

    PubMed  Google Scholar 

  • O'Sullivan, S. S., Wu, K., Politis, M., Lawrence, A. D., Evans, A. H., Bose, S. K., Djamshidian, A., Lees, A. J., & Piccini, P. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain, 134, 969–978.

    PubMed  Google Scholar 

  • Payer, D. E., Guttman, M., Kish, S. J., Tong, J., Strafella, A., Zack, M., Adams, J. R., Rusjan, P., Houle, S., Furukawa, Y., Wilson, A. A., & Boileau, I. (2015). [11C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson’s disease with impulse control disorders. Movement Disorders, 30, 160–166.

    CAS  PubMed  Google Scholar 

  • Pellicano, C., Niccolini, F., Wu, K., O’Sullivan, S. S., Lawrence, A. D., Lees, A. J., Piccini, P., & Politis, M. (2015). Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders. Journal of Neurology, 262, 2653–2661.

    CAS  PubMed  Google Scholar 

  • Petersen, K., Van Wouwe, N., Stark, A., Lin, Y. C., Kang, H., Trujillo-Diaz, P., Kessler, R., et al. (2018). Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson’s disease. Human Brain Mapping, 39, 509–521.

    PubMed  Google Scholar 

  • Politis, M., Loane, C., Wu, K., O’Sullivan, S. S., Woodhead, Z., Kiferle, L., Lawrence, A. D., Lees, A. J., & Piccini, P. (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain, 136, 400–411.

    PubMed  Google Scholar 

  • Potenza, M. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3181–3189.

    PubMed  PubMed Central  Google Scholar 

  • Premi, E., Pilotto, A., Garibotto, V., Bigni, B., Turrone, R., Alberici, A., Cottini, E., et al. (2016). Impulse control disorder in PD: a lateralized monoaminergic frontostriatal disconnection syndrome?. Parkinsonism & Related Disorders, 30, 62–66.

  • Qiu, Y., Su, H. H., Lv, X. F., Ma, X. F., Jiang, G. H., & Tian, J. Z. (2017). Intrinsic brain network abnormalities in codeine-containing cough syrup-dependent male individuals revealed in resting state fMRI. Journal of Magnetic Resonance Imaging, 45, 177–186.

    PubMed  Google Scholar 

  • Rao, H., Mamikonyan, E., Detre, J. A., Siderowf, A. D., Stern, M. B., Potenza, M. N., Weintraub, D., et al. (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson's disease. Movement Disorders, 25, 1660–1669.

    PubMed  PubMed Central  Google Scholar 

  • Ray, N. J., Miyasaki, J. M., Zurowski, M., Ko, J. H., Cho, S. S., Pellecchia, G., Antonelli, F., Houle, S., Lang, A. E., & Strafella, A. P. (2012). Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: A [11C] FLB-457 and PET study. Neurobiology of Disease, 48, 519–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardi, L., Lambert, C., De Micco, R., Morgante, F., Edwards, M. (2017). Can we predict development of impulsive-compulsive behaviours in Parkinson’s disease? Journal of Neurology, Neurosurgery, and Psychiatry, 89(5):476–481.

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18, 247–291.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1507), 3137–3146.

  • Ruitenberg, M., Wu, T., Averbeck, B., Chou, K., Koppelmans, V., & Seidler, R. (2018). Impulsivity in Parkinson’s disease is associated with alterations in affective and sensorimotor striatal networks. Frontiers in Neurology, 9, 279.

    PubMed  PubMed Central  Google Scholar 

  • Schadt, J. P., Anton, R. F., & Myrick, H. (2013). Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addiction Biology, 18, 121–133.

    Google Scholar 

  • Smith, K. M., Xie, S. X., & Weintraub, D. (2016). Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. Journal of Neurology, Neurosurgery & Psychiatry, 87(8), 864.

    Google Scholar 

  • Steeves, T. D., Miyasaki, J., Zurowski, M., Lang, A. E., Pellecchia, G., Van Eimeren, T., Rusjan, P., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain, 132, 1376–1385.

    CAS  PubMed  Google Scholar 

  • Tessitore, A., Santangelo, G., De Micco, R., Vitale, C., Giodarno, A., Raimo, S., Corbo, D., et al. (2016). Cortical thickness changes in patients with Parkinson’s disease and impulse control disorders. Parkinsonism & Related Disorders, 24, 119–125.

    Google Scholar 

  • Tessitore, A., Santangelo, G., De Micco, R., Giordano, A., Raimo, S., Amboni, M., & Esposito, F. (2017a). Resting-state brain networks in patients with Parkinson’s disease and impulse control disorders. Cortex, 94, 63–72.

    PubMed  Google Scholar 

  • Tessitore, A., De Micco, R., Giordano, A., di Nardo, F., Caiazzo, G., Siciliano, M., & De Stefano, M. (2017b). Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Movement Disorders, 32, 1710–1719.

    CAS  PubMed  Google Scholar 

  • Thanos, P. K., Volkow, N. D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D. K., & Hitzemann, R. (2001). Overexpression of dopamine D2 receptors reduces alcohol self-administration. Journal of Neurochemistry, 78, 1094–1103.

    CAS  PubMed  Google Scholar 

  • van Eimeren, T., Pellecchia, G., Cilia, R., Ballanger, B., Steeves, T. D., Houle, S., & Miyasaki, J. M. (2010). Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology, 75, 1711–1716.

    PubMed  PubMed Central  Google Scholar 

  • Verger, A., Klesse, E., Chawki, M. B., et al. (2018). Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Human Brain Mapping, 00, 1–9.

    CAS  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wang, G. J., Hitzemann, R., Logan, J., Schlyer, D. J., Dewey, S. L., & Wolf, A. P. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–177.

    CAS  PubMed  Google Scholar 

  • Volkow, N., Wang, G. J., Fowler, J. S., Logan, L., Gatley, S. J., Gifford, A., Hitzemann, R., et al. (1999). Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. The American Journal of Psychiatry, 156, 1440–1443.

    CAS  PubMed  Google Scholar 

  • Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., Logan, J., Franceschi, D., Gatley, J., Hitzemann, R., Gifford, A., Wong, C., & Pappas, N. (2001). Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. The American Journal of Psychiatry, 158, 2015–2021.

    CAS  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P. P., Logan, J., Gatley, S. J., Gifford, A., Ding, Y. S., Wong, C., & Pappas, N. (2002). Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse, 46, 79–82.

    CAS  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., Jayne, M., Ma, Y., & Wong, C. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26, 6583–6588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Jayne, M., Ma, Y., Pradhan, K., & Wong, C. (2007). Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. The Journal of Neuroscience, 27, 12700–12706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., & Telang, F. (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3191–3200.

    PubMed  PubMed Central  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., & Tomasi, D. (2012). Addiction circuitry in the human brain. Annual Review of Pharmacology and Toxicology, 52, 321–336.

    CAS  PubMed  Google Scholar 

  • Vollstadt-Klein, S., Wichert, S., Rabinstein, J., Buhler, M., Klein, O., Ende, G., Hermann, D., et al. (2010). Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction, 105, 1741–1749.

    PubMed  Google Scholar 

  • Voon, V., Pessiglione, M., Brezing, C., Gallea, C., Fernandez, H. H., Dolan, R. J., & Hallet, M. (2010). Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron, 65, 135–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., Dolan, R. J., & Hallett, M. (2011). Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain, 134(5), 1438–1446.

    PubMed  PubMed Central  Google Scholar 

  • Voon, V., Rizos, A., Chakravartty, R., Mulholland, N., Robinson, S., Howell, N. A., Harrison, N., Vivian, G., & Ray Chaudhuri, K. (2014). Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 148–152.

    PubMed  Google Scholar 

  • Vriend, C., Nordbeck, A. H., Booij, J., van der Werf, Y. D., Pattij, T., Voorn, P., Rajimakers, P., et al. (2014). Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease. Movement Disorders, 29, 904–911.

    CAS  PubMed  Google Scholar 

  • Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G. R., & Lang, A. E. (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of Neurology, 67, 589–595.

    PubMed  Google Scholar 

  • Wilson, S. J., Creswell, K. G., Sayette, M. A., & Fiez, J. A. (2012). Ambivalence about smoking and cue-elicited neural acitivity in quitting-motivated smokers faced with an opportunity to smoke. Addictive Behaviors, 38, 1541–1549.

    PubMed  PubMed Central  Google Scholar 

  • Wu, K., Politis, M., O’Sullivan, S. S., Lawrence, A. D., Warsi, S., Bose, S., Lees, A. J., & Piccini, P. (2015). Single versus multiple impulse control disorders in Parkinson’s disease: an 11C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release. Journal of Neurology, 262, 1504–1514.

    CAS  PubMed  Google Scholar 

  • Yalachkov, Y., Kaiser, J., & Naumer, M. J. (2012). Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity. Neuroscience and Biobehavioral Reviews, 36, 825–835.

    PubMed  Google Scholar 

  • Yoder, K., Kareken, D., & Morris, E. (2008). What were they thinking? Cognitive states may influence [(11)C]Raclopride binding potential in the striatum. Neuroscience Letters, 430, 38–42.

    CAS  PubMed  Google Scholar 

  • Yoo, H. B., Lee, J. Y., Lee, J. S., Kang, H., Kim, Y. K., Song, I. C., Lee, D. S., & Jeon, B. S. (2015a). Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. Journal of Clinical Neurology (Seoul, Korea), 11, 42–47.

    Google Scholar 

  • Yoo, H. S., Yun, H. J., Chung, S. J., Sunwoo, M. K., Lee, J. M., Sohn, Y. H., & Lee, P. H. (2015b). Patterns of neuropsychological profile and cortical thinning in Parkinson’s disease with punding. PLoS One, 10(7), e0134468.

    PubMed  PubMed Central  Google Scholar 

  • Zadeh, M., Ashraf-Ganjouei, A., Sherbaf, F., Haghshomar, M., & Aarabi, M. (2018). White matter tract alterations in drug-naïve Parkinson’s disease patients with impulse control disorders. Frontiers in Neurology, 9, 163.

  • Zhang, S., Dissanayaka, N., Dawson, A., O’Sullivan, J., Mosley, P., Hall, W., & Carter, A. (2016). Management of impulse control disorders in Parkinson’s disease. International Psychogeriatrics, 28, 1597–1614.

    PubMed  Google Scholar 

Download references

Acknowledgements

Swathi Ramdave and Andrew Dawson are supported by an Australian Government Research Training Program Scholarship. Adrian Carter is supported by an NHMRC Career Development Fellowship (ID: APP1123311). Nadeeka Dissanayaka is supported by the NHMRC and Lions Medical Research Fellowship.

Funding

This review was funded by the Australian Government in the form of a Research Training Program Scholarship (SR/AD), Australian Research Council Discovery Early Career Researcher Award (ID: DE140101097) (AC) and National Health and Medical Research Council Career Development Fellowship (ID: APP1123311) (AC). NHMRC Boosting Dementia Research Leadership fellowship and Lions Medical Research Fellowship (ND).

Author information

Authors and Affiliations

Authors

Contributions

SR wrote first draft. SR and AD did literature search. SR, AD, AC and ND reviewed and edited the manuscript. SR, AD, AC and ND approved final version.

Corresponding author

Correspondence to Swathi Ramdave.

Ethics declarations

Conflict of interest

SR declares that she has no conflict of interest. AD declares that he has no conflict of interest. AC declares that he has no conflict of interest. ND declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdave, S., Dawson, A., Carter, A. et al. Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson’s disease. Brain Imaging and Behavior 14, 2785–2798 (2020). https://doi.org/10.1007/s11682-019-00041-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00041-7

Keywords

Navigation