Skip to main content

A five-year longitudinal study reveals progressive cortical thinning in narcolepsy and faster cortical thinning in relation to early-onset

Abstract

Narcolepsy with cataplexy is characterized by excessive daytime sleepiness, cataplexy, and other REM sleep phenomena. Previous MRI studies were cross-sectional in design and could not adequately address if disease progression leads the brain structural abnormalities in narcolepsy. Our analysis in patients using longitudinally collected brain MRIs (n = 17; 2 scans per patient; scan interval: 4.7 ± 1.9 years) revealed widespread progressive cortical thinning in bilateral dorsolateral frontal and fusiform cortices, right anterior cingulate (corrected p < 0.05). Cross-sectional analyses showed faster progressive cortical thinning in patients than controls (n = 83, one scan per subject available), which we confirmed significant in the analysis of a small-set of longitudinal control data (n = 10). The pattern of progressive thinning in patients was overlapped well with those found in structural and functional studies of narcolepsy. We also found a faster progression of cortical thinning and worse disease severity (decreased sleep efficiency, increased sleep latency and arousal index) over time in a subgroup of patients with earlier disease onset (n = 9, onset age: 15.9 ± 2.5 years old) compared to later disease onset (n = 8, 25.3 ± 4.9). The faster progressive cortical thinning and worse disease severity over time in the patients with early-onset suggest compelling evidence of disease progression existing in this phenotype of narcolepsy syndrome. Our result based on a small dataset, however, demands a more careful investigation of the underlying mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
FIG. 5

References

  1. Aguirre, M., Broughton, R., & Stuss, D. (1985). Does memory impairment exist in narcolepsy-cataplexy? Journal of Clinical and Experimental Neuropsychology, 7(1), 14–24. https://doi.org/10.1080/01688638508401239.

    Article  PubMed  CAS  Google Scholar 

  2. Altman, D. G. (2006). The cost of dichotomising continuous variables. BMJ, 332(7549), 1080–1080. https://doi.org/10.1136/bmj.332.7549.1080.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. https://doi.org/10.1001/archpsyc.1961.01710120031004.

    Article  PubMed  CAS  Google Scholar 

  4. Beck, A. T., Steer, R. A., & Carbin, M. G. (1998). Psychometric properties of the beck depression inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100. https://doi.org/10.1159/000066239.

    Article  Google Scholar 

  5. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B …, 57(1), 289–300 http://www.jstor.org/stable/2346101. Accessed 12 May 2014.

    Google Scholar 

  6. Brenneis, C., Brandauer, E., Frauscher, B., Schocke, M., Trieb, T., Poewe, W., & Högl, B. (2005). Voxel-based morphometry in narcolepsy. Sleep Medicine, 6(6), 531–536. https://doi.org/10.1016/j.sleep.2005.03.015.

    Article  PubMed  Google Scholar 

  7. Chambers, C. D., Payne, J. M., & Mattingley, J. B. (2007). Parietal disruption impairs reflexive spatial attention within and between sensory modalities. Neuropsychologia, 45(8), 1715–1724. https://doi.org/10.1016/j.neuropsychologia.2007.01.001.

    Article  PubMed  Google Scholar 

  8. Chung, M. K., Wo, K. J., Taylo, J., Rams, J., Robbinst, S., & Evanst, A. C. (2001). Diffusion smoothing on the cortical surface. NeuroImage, 13(6), 2001. https://doi.org/10.1016/S1053-8119(01)91438-7.

    Article  Google Scholar 

  9. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205. https://doi.org/10.1097/00004728-199403000-00005.

    Article  PubMed  CAS  Google Scholar 

  10. Dauvilliers, Y., Montplaisir, J., Molinari, N., Carlander, B., Ondze, B., Besset, A., & Billiard, M. (2001). Age at onset of narcolepsy in two large populations of patients in France and Quebec. Neurology, 57(11), 2029–2033. https://doi.org/10.1212/WNL.57.11.2029.

    Article  PubMed  CAS  Google Scholar 

  11. Dauvilliers, Y., Baumann, C. R., Carlander, B., Bischof, M., Blatter, T., Lecendreux, M., Maly, F., Besset, A., Touchon, J., Billiard, M., Tafti, M., & Bassetti, C. L. (2003). CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. Journal of Neurology, Neurosurgery, and Psychiatry, 74(12), 1667–1673. https://doi.org/10.1136/jnnp.74.12.1667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dauvilliers, Y., Gosselin, A., Paquet, J., Touchon, J., Billiard, M., & Montplaisir, J. (2004). Effect of age on MSLT results in patients with narcolepsy-cataplexy. Neurology, 62(1), 46–50. https://doi.org/10.1212/01.WNL.0000101725.34089.1E.

    Article  PubMed  CAS  Google Scholar 

  13. Dauvilliers, Y., Arnulf, I., & Mignot, E. (2007). Narcolepsy with cataplexy. Lancet, 369, 499–511. https://doi.org/10.1016/S0140-6736(07)60237-2.

    Article  PubMed  Google Scholar 

  14. Dauvilliers, Y., Abril, B., Mas, E., Michel, F., & Tafti, M. (2009). Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology, 73(16), 1333–1334. https://doi.org/10.1212/WNL.0b013e3181bd1344.

    Article  PubMed  CAS  Google Scholar 

  15. Diggle, P. J., Liang, K. Y., & Zegler, S. L. (1995). Analysis of longitudinal data. Oxford Statistical Science Series , 13, 253. https://doi.org/10.1016/S0169-7161(00)18007-1.

    Google Scholar 

  16. Dong, X. S., Li, J., Han, F., Han, X., Jia, F., Wang, L., He, Z. M., & He, Q. Y. (2005). Clinical features of early-onset narcolepsy. Zhonghua Yi Xue Za Zhi, 85(44), 3107–3109 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16405812.

    PubMed  Google Scholar 

  17. Dong, X. S., Ma, S. F., Cao, C. W., Li, J., An, P., Zhao, L., Liu, N. Y., Yan, H., Hu, Q. T., Mignot, E., Strohl, K. P., Gao, Z. C., Zeng, C., & Han, F. (2013). Hypocretin (orexin) neuropeptide precursor gene, HCRT, polymorphisms in early-onset narcolepsy with cataplexy. Sleep Medicine., 14, 482–487. https://doi.org/10.1016/j.sleep.2013.01.016.

    Article  PubMed  Google Scholar 

  18. Draganski, B., Geisler, P., Hajak, G., Schuierer, G., Bogdahn, U., Winkler, J., & May, A. (2002). Hypothalamic gray matter changes in narcoleptic patients. Nature Medicine, 8(11), 1186–1188. https://doi.org/10.1038/nm1102-1186.

    Article  PubMed  CAS  Google Scholar 

  19. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870–878. https://doi.org/10.1006/nimg.2001.1037.

    Article  Google Scholar 

  20. Guilleminault, C., & Dement, W. C. (1977). 235 cases of excessive daytime sleepiness. Diagnosis and tentative classification. Journal of the Neurological Sciences, 31(1), 13–27. https://doi.org/10.1016/0022-510X(77)90003-X.

    Article  PubMed  CAS  Google Scholar 

  21. Henry, G. K., Satz, P., & Heilbronner, R. L. (1993). Evidence of a perceptual-encoding deficit in narcolepsy? Sleep, 16, 123–127.

    Article  CAS  Google Scholar 

  22. Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of sleepiness: A new approach. Psychophysiology, 10(4), 431–436. https://doi.org/10.1111/j.1469-8986.1973.tb00801.x.

    Article  PubMed  CAS  Google Scholar 

  23. Hood, B., & Bruck, D. (1996). Sleepiness and performance in narcolepsy. Journal of Sleep Research, 5(2), 128–134.

    Article  CAS  Google Scholar 

  24. Im, K., Lee, J.-M., Lyttelton, O., Kim, S. H. I., & Evans, A. C. (2008). Brain size and cortical structure in the adult human brain. Cerebral Cortex, 18(9), 2181–2191. https://doi.org/10.1093/cercor/bhm244.

    Article  PubMed  Google Scholar 

  25. Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540–545.

    Article  CAS  Google Scholar 

  26. Joo, E. Y., Tae, W. S., Kim, J. H., Kim, B. T., & Hong, S. B. (2004). Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Annals of Neurology, 56(3), 437–440. https://doi.org/10.1002/ana.20212.

    Article  PubMed  CAS  Google Scholar 

  27. Joo, E. Y., Hong, S. B., Woo, S. T., Kim, J. H., Han, S. J., Cho, Y. W., et al. (2005). Cerebral perfusion abnormality in narcolepsy with cataplexy. NeuroImage, 28(2), 410–416. https://doi.org/10.1016/j.neuroimage.2005.06.019.

    Article  PubMed  Google Scholar 

  28. Joo, E. Y., Tae, W. S., Kim, S. T., & Hong, S. B. (2009). Gray matter concentration abnormality in brains of narcolepsy patients. Korean Journal of Radiology, 10(6), 552–558. https://doi.org/10.3348/kjr.2009.10.6.552.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joo, E. Y., Jeon, S., Lee, M., Kim, S. T., Yoon, U., Koo, D. L., Lee, J. M., & Hong, S. B. (2011). Analysis of cortical thickness in narcolepsy patients with cataplexy. Sleep, 34, 1357–1364. https://doi.org/10.5665/sleep.1278.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joo, E. Y., Kim, H., Suh, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: Magnetic resonance imaging morphometry. Sleep, 37(7), 1189–1198. https://doi.org/10.5665/sleep.3836.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kaufmann, C., Schuld, A., Pollmächer, T., & Auer, D. P. (2002). Reduced cortical gray matter in narcolepsy: Preliminary findings with voxel-based morphometry. Neurology, 58(12), 1852–1855. https://doi.org/10.1212/WNL.58.12.1852.

    Article  PubMed  Google Scholar 

  32. Kim, J. S., Singh, V., Lee, J. K. J. M. J. K. J. M., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., et al. (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage, 27(1), 210–221. https://doi.org/10.1016/j.neuroimage.2005.03.036.

    Article  PubMed  Google Scholar 

  33. Kim, S. J., Lyoo, I. K., Lee, Y. S., Lee, J. Y., Yoon, S. J., Kim, J. E., Kim, J. H., Hong, S. J., & Jeong, D. U. (2009). Gray matter deficits in young adults with narcolepsy. Acta Neurologica Scandinavica, 119(1), 61–67. https://doi.org/10.1111/j.1600-0404.2008.01063.x.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, H., Suh, S., Joo, E. Y., & Hong, S. B. (2015). Morphological alterations in amygdalo-hippocampal substructures in narcolepsy patients with cataplexy. Brain Imaging and Behavior., 10, 984–994. https://doi.org/10.1007/s11682-015-9450-0.

    Article  Google Scholar 

  35. Lambe, E. K., Olausson, P., Horst, N. K., Taylor, J. R., & Aghajanian, G. K. (2005). Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: Correlation with improved attention in rat. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(21), 5225–5229. https://doi.org/10.1523/JNEUROSCI.0719-05.2005.

    Article  CAS  Google Scholar 

  36. Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., & Evans, A. C. (2005). Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral Cortex, 15(7), 995–1001. https://doi.org/10.1093/cercor/bhh200.

    Article  PubMed  Google Scholar 

  37. Lyttelton, O., Boucher, M., Robbins, S., & Evans, A. (2007). An unbiased iterative group registration template for cortical surface analysis. NeuroImage, 34(4), 1535–1544. https://doi.org/10.1016/j.neuroimage.2006.10.041.

    Article  PubMed  Google Scholar 

  38. MacDonald, D., Kabani, N., Evans, A. C., & Avis, D. (2000). Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12(3), 340–356. https://doi.org/10.1006/nimg.1999.0534.

    Article  PubMed  CAS  Google Scholar 

  39. Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). NeuroImage. https://doi.org/10.1006/nimg.1995.1012.

    Article  CAS  Google Scholar 

  40. Mignot, E., Hayduk, R., Black, J., Grumet, F. C., & Guilleminault, C. (1997). HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep, 20(11), 1012–1020.

    PubMed  CAS  Google Scholar 

  41. Noh, H. J., Joo, E. Y., Kim, S. T., Yoon, S. M., Koo, D. L., Kim, D., Lee, G. H., & Hong, S. B. (2012). The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. Journal of Clinical Neurology (Korea), 8(2), 130–138. https://doi.org/10.3988/jcn.2012.8.2.130.

    Article  Google Scholar 

  42. Overeem, S., Steens, S. C. a., Good, C. D., Ferrari, M. D., Mignot, E., Frackowiak, R. S. J., et al. (2003). Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep, 26(1), 44–46.

    PubMed  Google Scholar 

  43. Peyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay, Y., Nevsimalova, S., Aldrich, M., Reynolds, D., Albin, R., Li, R., Hungs, M., Pedrazzoli, M., Padigaru, M., Kucherlapati, M., Fan, J., Maki, R., Lammers, G. J., Bouras, C., Kucherlapati, R., Nishino, S., & Mignot, E. (2000). A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Medicine, 6(9), 991–997. https://doi.org/10.1038/79690.

    Article  PubMed  CAS  Google Scholar 

  44. Pizza, F., Vandi, S., Liguori, R., Parchi, P., Avoni, P., Mignot, E., & Plazzi, G. (2014). Primary progressive narcolepsy type 1: The other side of the coin. Neurology, 83, 2189–2190. https://doi.org/10.1212/WNL.0000000000001051.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rieger, M., Mayer, G., & Gauggel, S. (2003). Attention deficits in patients with narcolepsy. Sleep, 26(1), 36–43 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12627730.

    PubMed  Google Scholar 

  46. Rocca, F. L., Pizza, F., Ricci, E., & Plazzi, G. (2015). Narcolepsy during childhood: An update. Neuropediatrics, 46, 181–198. https://doi.org/10.1055/s-0035-1550152.

    Article  PubMed  Google Scholar 

  47. Schaer, M., Poryazova, R., Schwartz, S., Bassetti, C. L., & Baumann, C. R. (2012). Cortical morphometry in narcolepsy with cataplexy. Journal of Sleep Research, 21(5), 487–494. https://doi.org/10.1111/j.1365-2869.2012.01000.x.

    Article  PubMed  Google Scholar 

  48. Scherfler, C., Frauscher, B., Schocke, M., Nocker, M., Gschliesser, V., Ehrmann, L., Niederreiter, M., Esterhammer, R., Seppi, K., Brandauer, E., Poewe, W., & Högl, B. (2012). White and gray matter abnormalities in narcolepsy with cataplexy. Sleep, 35(3), 345–351. https://doi.org/10.5665/sleep.1692.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97. https://doi.org/10.1109/42.668698.

    Article  PubMed  CAS  Google Scholar 

  50. Snell, R. S. (2010). Clinical neuroanatomy (7th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  51. Worsley, K., Taylor, J., Carbonell, F., Chung, M., Duerden, E., Bernhardt, B., Lyttelton, O., Boucher, M., & Evans, A. C. (2009). SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage, 47, S102. https://doi.org/10.1016/S1053-8119(09)70882-1.

    Article  Google Scholar 

  52. Zijdenbos, a. P., Forghani, R., & Evans, a. C. (2002). Automatic “pipeline” analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Transactions on Medical Imaging, 21(10), 1280–1291. https://doi.org/10.1109/TMI.2002.806283.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Felix Carbonell for his consultation and advice in statistical analysis. This study was supported by the Basic Science Research Program through the National Research Foundation of Korea, which is funded by the Ministry of Science, ICT & Future Planning, Republic of Korea (2014R1A1A3049510), by Samsung Biomedical Research Institute grant (SMO1162071), by Donald E. and Delia B. Baxter Foundation Fellowship Awards, by a grant from Canadian Institute of Health Research (CIHR) awarded to Professor Alan C. Evans (201085 & 247003). Dr. Seun Jeon is the recipient of following fellowships that contribute to his support: Bourse Fonds de Recherche Santé Québec (FRQS, dossier 34240 & 259605) and by Jeanne Timmins Costello Fellowship of the Montreal Neurological Institute (240522).

Author information

Affiliations

Authors

Contributions

Seun Jeon performed image processing, statistical analyses, interpretation of data, figure making, and wrote the manuscript. Jae Wook Cho contributed in interpretation of data. Hosung Kim contributed in designing the study, supervised the study, and performed critical revision of the manuscript. Alan C. Evans supervised the study. Seung Bong Hong acquired data. Eun Yeon Joo contributed in designing the study, supervised the study and performed acquisition of the data.

Corresponding authors

Correspondence to Hosung Kim or Eun Yeon Joo.

Ethics declarations

Conflicts of interest

This was not an industry supported study. The authors have no commercial, financial, or other relationship related to the subject of this paper that could constitute or suggest a conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of the Samsung Medical Center.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 14726 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Cho, J.W., Kim, H. et al. A five-year longitudinal study reveals progressive cortical thinning in narcolepsy and faster cortical thinning in relation to early-onset. Brain Imaging and Behavior 14, 200–212 (2020). https://doi.org/10.1007/s11682-018-9981-2

Download citation

Keywords

  • Narcolepsy
  • Longitudinal study
  • Early-onset
  • Cortical thinning