The effect of midlife cardiovascular risk factors on white matter hyperintensity volume and cognition two decades later in normal ageing women

  • Rowa Aljondi
  • Cassandra SzoekeEmail author
  • Chris Steward
  • Alexandra Gorelik
  • Patricia Desmond
Original Research


Cerebral White Matter Hyperintensity (WMH) lesions have been identified as markers of cerebrovascular diseases and they are associated with increased risk of cognitive impairment. In this study, we investigated the relationship between midlife cardiovascular risk factors and late life WMH volumes two decades later, and examined their association with cognitive performance. 135 participants from the Women’s Healthy Ageing Project had completed midlife cardiovascular risk measurement in 1992 and late life brain MRI scan and cognitive assessment in 2012. In these community-dwelling normal aging women, we found that higher midlife Framingham Cardiovascular Risk Profile (FCRP) score was associated with greater WMH volume two decades later, and was predominantly driven by the impact of HDL cholesterol level, controlling for age, education and APOE ε4 status. Structural equation modelling demonstrated that the relationship between midlife FCRP score and late life executive function was mediated by WMH volume. These findings suggest intervention strategies that target major cardiovascular risk factors at midlife might be effective in reducing the development of WMH lesions and thus late life cognitive decline.


Midlife cardiovascular risk factors Framingham cardiovascular risk profile score White matter hyperintensity volume Cognitive domains Elderly women 



We would like to acknowledge the contribution of the participants and their supporters who have contributed their time and commitment for over 20 years to the University. A full list of all researchers contributing to the project and the membership of our Scientific Advisory Board is available at


This study is funded by the National Health and Medical Research Council (NHMRC Grants 547500, 1032350 & 1062133), Ramaciotti Foundation, Australian Healthy Ageing Organisation, the Brain Foundation, the Alzheimer’s Association (NIA320312), Australian Menopausal Society, Bayer Healthcare, Shepherd Foundation, Scobie and Claire Mackinnon Foundation, Collier Trust Fund, J.O. & J.R. Wicking Trust, Mason Foundation and the Alzheimer’s Association of Australia. Inaugural funding was provided by VicHealth and the NHMRC. The Principal Investigator of WHAP (CSz) is supported by the National Health and Medical Research Council.

Compliance with ethical standards

Conflict of interest

Dr. Szoeke has provided clinical consultancy and been on scientific advisory committees for the Australian Commonwealth Scientific and Industrial Research Organisation, Alzheimer’s Australia, University of Melbourne and other relationships which are subject to confidentiality clauses. She has been a named Chief Investigator on investigator driven collaborative research projects in partnership with Pfizer, Merck, Bayer and GE. She has been an investigator on clinical trials with Lundbeck within the last 2 years. Dr. Desmond has supported by the Royal Melbourne Hospital and the National Health and Medical Research Council of Australia. Other authors report no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9970_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)


  1. Abraham, H. M. A., Wolfson, L., Moscufo, N., Guttmann, C. R., Kaplan, R. F., & White, W. B. (2015). Cardiovascular risk factors and small vessel disease of the brain: Blood pressure, white matter lesions, and functional decline in older persons. Journal of Cerebral Blood Flow & Metabolism, 36(1), 132–142.CrossRefGoogle Scholar
  2. Allan, C. L., Zsoldos, E., Filippini, N., Sexton, C. E., Topiwala, A., Valkanova, V., Singh-Manoux, A., Tabák, A. G., Shipley, M. J., Mackay, C., & Mackay, C. (2014). Lifetime hypertension as a predictor of brain structure in older adults: cohort study with a 28-year follow up. The British Journal of Psychiatry, 206(4), 308–−315.CrossRefGoogle Scholar
  3. Arntzen, K., Schirmer, H., Wilsgaard, T., & Mathiesen, E. (2011). Impact of cardiovascular risk factors on cognitive function: The Tromsø study. European Journal of Neurology, 18(5), 737–743.CrossRefGoogle Scholar
  4. Au, R., Massaro, J. M., Wolf, P. A., Young, M. E., Beiser, A., Seshadri, S., D’Agostino, R. B., & DeCarli, C. (2006). Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham heart study. Archives of Neurology, 63(2), 246–250.CrossRefGoogle Scholar
  5. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), 2033–2044.CrossRefGoogle Scholar
  6. Bangen, K. J., Beiser, A., Delano-Wood, L., Nation, D. A., Lamar, M., Libon, D. J., Bondi, M. W., Seshadri, S., Wolf, P. A., & Au, R. (2013). APOE genotype modifies the relationship between midlife vascular risk factors and later cognitive decline. Journal of Stroke and Cerebrovascular Diseases, 22(8), 1361–1369.CrossRefGoogle Scholar
  7. Barter, P. J., Nicholls, S., Rye, K. A., Anantharamaiah, G., Navab, M., & Fogelman, A. M. (2004). Antiinflammatory properties of HDL. Circulation Research, 95(8), 764–772.CrossRefGoogle Scholar
  8. Bitton, A., & Gaziano, T. (2010). The Framingham heart Study's impact on global risk assessment. Progress in Cardiovascular Diseases, 53(1), 68–78.CrossRefGoogle Scholar
  9. Brindle, P., Beswick, A., Fahey, T., & Ebrahim, S. (2006). Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: A systematic review. Heart, 92(12), 1752–1759.CrossRefGoogle Scholar
  10. Carass, A., Roy, S., Jog, A., Cuzzocreo, J. L., Magrath, E., Gherman, A., & Sudre, C. H. (2017). Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage, 148(12), 77–102.CrossRefGoogle Scholar
  11. Collins, P. (2008). HDL-C in post-menopausal women: An important therapeutic target. International Journal of Cardiology, 124(3), 275–282.CrossRefGoogle Scholar
  12. D’Agostino, R. B., Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., & Kannel, W. B. (2008). General cardiovascular risk profile for use in primary care the Framingham heart study. Circulation, 117(6), 743–753.CrossRefGoogle Scholar
  13. De Leeuw, F. E., De Groot, J. C., Oudkerk, M., Witteman, J., Hofman, A., Van Gijn, J., & Breteler, M. (1999). A follow-up study of blood pressure and cerebral white matter lesions. Annals of Neurology, 46(6), 827–833.CrossRefGoogle Scholar
  14. De Leeuw, F.-E., Richard, F., de Groot, J. C., van Duijn, C. M., Hofman, A., van Gijn, J., & Breteler, M. M. (2004). Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke, 35(5), 1057–1060.CrossRefGoogle Scholar
  15. Debette, S., Seshadri, S., Beiser, A., Au, R., Himali, J., Palumbo, C., Wolf, P., & DeCarli, C. (2011). Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology, 77(5), 461–468.CrossRefGoogle Scholar
  16. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). CVLT, California Verbal Learning Test: Adult Version: Manual: Psychological corporation.Google Scholar
  17. Dennerstein, L., Dudley, E. C., Hopper, J. L., Guthrie, J. R., & Burger, H. G. (2000). A prospective population-based study of menopausal symptoms. Obstetrics & Gynecology, 96(3), 351–358.Google Scholar
  18. Dickie, D. A., Ritchie, S. J., Cox, S. R., Sakka, E., Royle, N. A., Aribisala, B. S., Hernández, M. C. V., Maniega, S. M., Pattie, A., & Corley, J. (2016). Vascular risk factors and progression of white matter hyperintensities in the Lothian birth cohort 1936. Neurobiology of Aging, 42, 116–123.CrossRefGoogle Scholar
  19. Van Exel, E., de Craen, A. J., Gussekloo, J., Houx, P., Bootsma-van der Wiel, A., Macfarlane, P. W., Blauw, G. J., & Westendorp, R. G. (2002). Association between high-density lipoprotein and cognitive impairment in the oldest old. Annals of Neurology, 51(6), 716–721.CrossRefGoogle Scholar
  20. Fernando, M. S., Simpson, J. E., Matthews, F., Brayne, C., Lewis, C. E., Barber, R., Kalaria, R. N., Forster, G., Esteves, F., & Wharton, S. B. (2006). White matter lesions in an unselected cohort of the elderly molecular pathology suggests origin from chronic hypoperfusion injury. Stroke, 37(6), 1391–1398.CrossRefGoogle Scholar
  21. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.CrossRefGoogle Scholar
  22. Gattringer, T., Enzinger, C., Ropele, S., Gorani, F., Petrovic, K. E., Schmidt, R., & Fazekas, F. (2012). Vascular risk factors, white matter hyperintensities and hippocampal volume in normal elderly individuals. Dementia and Geriatric Cognitive Disorders, 33(1), 29–34.CrossRefGoogle Scholar
  23. Godin, O., Tzourio, C., Maillard, P., Alpérovitch, A., Mazoyer, B., & Dufouil, C. (2009). Apolipoprotein E genotype is related to progression of white matter lesion load. Stroke, 40(10), 3186–3190.CrossRefGoogle Scholar
  24. Golden, C. J., & Freshwater, S. M. (1978). Stroop color and word test.Google Scholar
  25. Gouw, A. A., Seewann, A., Van Der Flier, W. M., Barkhof, F., Rozemuller, A. M., Scheltens, P., & Geurts, J. J. (2010). Heterogeneity of small vessel disease: A systematic review of MRI and histopathology correlations. Journal of Neurology, Neurosurgery & Psychiatry, 82(2), 126–135.CrossRefGoogle Scholar
  26. Grundy, S. M., Balady, G. J., Criqui, M. H., Fletcher, G., Greenland, P., Hiratzka, L. F., Houston-Miller, N., Kris-Etherton, P., Krumholz, H. M., & LaRosa, J. (1998). Primary prevention of coronary heart disease: Guidance from Framingham a statement for healthcare professionals from the AHA task force on risk reduction. Circulation, 97(18), 1876–1887.CrossRefGoogle Scholar
  27. Guo, X., Pantoni, L., Simoni, M., Bengtsson, C., Björkelund, C., Lissner, L., & Skoog, I. (2009). Blood pressure components and changes in relation to white matter lesions. Hypertension, 54(1), 57–62.CrossRefGoogle Scholar
  28. Havlik, R. J., Foley, D. J., Sayer, B., Masaki, K., White, L., & Launer, L. J. (2002). Variability in midlife systolic blood pressure is related to late-life brain white matter lesions the Honolulu-Asia aging study. Stroke, 33(1), 26–30.CrossRefGoogle Scholar
  29. Hirono, N., Yasuda, M., Tanimukai, S., Kitagaki, H., & Mori, E. (2000). Effect of the apolipoprotein E ε4 allele on white matter hyperintensities in dementia. Stroke, 31(6), 1263–1268.CrossRefGoogle Scholar
  30. Hixson, J. E., & Vernier, D. T. (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. Journal of Lipid Research, 31(3), 545–548.PubMedGoogle Scholar
  31. Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140(6), 566–572.CrossRefGoogle Scholar
  32. Jeerakathil, T., Wolf, P. A., Beiser, A., Massaro, J., Seshadri, S., D’Agostino, R. B., & DeCarli, C. (2004). Stroke risk profile predicts white matter hyperintensity volume the Framingham study. Stroke, 35(8), 1857–1861.CrossRefGoogle Scholar
  33. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790.CrossRefGoogle Scholar
  34. Kaffashian, S., Dugravot, A., Nabi, H., Batty, G. D., Brunner, E., Kivimäki, M., & Singh-Manoux, A. (2011). Predictive utility of the Framingham general cardiovascular disease risk profile for cognitive function: Evidence from the Whitehall II study. European Heart Journal, 32(18), 2326–2332.CrossRefGoogle Scholar
  35. Kaffashian, S., Dugravot, A., Elbaz, A., Shipley, M. J., Sabia, S., Kivimäki, M., & Singh-Manoux, A. (2013). Predicting cognitive decline a dementia risk score vs the Framingham vascular risk scores. Neurology, 80(14), 1300–1306.CrossRefGoogle Scholar
  36. King, K. S., Peshock, R. M., Rossetti, H. C., McColl, R. W., Ayers, C. R., Hulsey, K. M., & Das, S. R. (2014). Effect of normal aging versus hypertension, abnormal body mass index, and diabetes mellitus on white matter hyperintensity volume. Stroke, 45(1), 255–257.CrossRefGoogle Scholar
  37. Kivipelto, M., Helkala, E. L., Hänninen, T., Laakso, M., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., & Nissinen, A. (2001). Midlife vascular risk factors and late-life mild cognitive impairment a population-based study. Neurology, 56(12), 1683–1689.CrossRefGoogle Scholar
  38. Kloppenborg, R. P., Nederkoorn, P. J., Geerlings, M. I., & van den Berg, E. (2014). Presence and progression of white matter hyperintensities and cognition a meta-analysis. Neurology, 82(23), 2127–2138.CrossRefGoogle Scholar
  39. Knopman, D., Boland, L., Mosley, T., Howard, G., Liao, D., Szklo, M., McGovern, P., Folsom, A., & Investigators, A. R. i. C. S. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56(1), 42–48.CrossRefGoogle Scholar
  40. Knopman, D. S., Mosley, T. H., Catellier, D. J., & Coker, L. H. (2009). Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: The ARIC MRI study. Alzheimer's & Dementia, 5(3), 207–214.CrossRefGoogle Scholar
  41. Kortte, K. B., Horner, M. D., & Windham, W. K. (2002). The trail making test, part B: Cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9(2), 106–109.CrossRefGoogle Scholar
  42. Kurlowicz, L., & Wallace, M. (1999). The mini-mental state examination (MMSE). Journal of Gerontological Nursing, 25(5), 8–9.CrossRefGoogle Scholar
  43. Laughlin, G. A., McEvoy, L. K., von Mühlen, D., Daniels, L. B., Kritz-Silverstein, D., Bergstrom, J., Cummins, K., Der-Martirosian, C., Jassal, S. K., & Barrett-Connor, E. (2011). Sex differences in the association of Framingham cardiac risk score with cognitive decline in community-dwelling elders without clinical heart disease. Psychosomatic Medicine, 73(8), 683–689.CrossRefGoogle Scholar
  44. Mack, W. J., Freed, D. M., Williams, B. W., & Henderson, V. W. (1992). Boston naming test: Shortened versions for use in Alzheimer's disease. Journal of Gerontology, 47(3), 154–158.CrossRefGoogle Scholar
  45. Marcus, J., Gardener, H., Rundek, T., Elkind, M. S., Sacco, R. L., DeCarli, C., & Wright, C. B. (2011). Baseline and longitudinal increases in diastolic blood pressure are associated with greater white matter hyperintensity volume the northern Manhattan study. Stroke, 42(9), 2639–2641.CrossRefGoogle Scholar
  46. Meyers, J. E., & Meyers, K. R. (1995). Rey complex figure test under four different administration procedures. The Clinical Neuropsychologist, 9(1), 63–67.CrossRefGoogle Scholar
  47. Modir, R., Gardener, H., & Wright, C. B. (2012). Blood pressure and white matter hyperintensity volume-a review of the relationship and implications for stroke prediction and prevention. European Neurological Review, 7(3), 174–177.CrossRefGoogle Scholar
  48. Murray, A. D., Staff, R. T, Shenkin, S. D., Deary, I. J., Starr, J. M., & Whalley, L. J. (2005). Brain white matter hyperintensities: Relative importance of vascular risk factors in nondemented elderly people 1. Radiology, 237(1), 251–257.CrossRefGoogle Scholar
  49. Nelson, H. E., & Willison, J. (1991). National Adult Reading Test (NART): Nfer-Nelson Windsor.Google Scholar
  50. Patterson, J. (2011). Controlled oral word association test Encyclopedia of clinical neuropsychology. In: Kreutzer J, DeLuca J, Caplan B, editors (pp. 703–770). New York: Springer.Google Scholar
  51. Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11(3), 157–165.CrossRefGoogle Scholar
  52. Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21(2), 149–157.CrossRefGoogle Scholar
  53. Raz, N., Yang, Y., Dahle, C. L., & Land, S. (2012). Volume of white matter hyperintensities in healthy adults: Contribution of age, vascular risk factors, and inflammation-related genetic variants. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(3), 361–369.CrossRefGoogle Scholar
  54. Rondina, J. M., Squarzoni, P., Souza-Duran, F. L., Tamashiro-Duran, J. H., Scazufca, M., Menezes, P. R., Vallada, H., & Filho, G. B. (2014). Framingham coronary heart disease risk score can be predicted from structural brain images in elderly subjects. Frontiers in Aging Neuroscience, 6, 300.CrossRefGoogle Scholar
  55. Seshadri, S., Wolf, P., Beiser, A., Elias, M., Au, R., Kase, C., D’Agostino, R., & DeCarli, C. (2004). Stroke risk profile, brain volume, and cognitive function the Framingham offspring study. Neurology, 63(9), 1591–1599.CrossRefGoogle Scholar
  56. Sheridan, L. K., Fitzgerald, H. E., Adams, K. M., Nigg, J. T., Martel, M. M., Puttler, L. I., Wong, M. M., & Zucker, R. A. (2006). Normative symbol digit modalities test performance in a community-based sample. Archives of Clinical Neuropsychology, 21(1), 23–28.CrossRefGoogle Scholar
  57. Shulman, K. I., Shedletsky, R., & Silver, I. L. (1986). The challenge of time: Clock-drawing and cognitive function in the elderly. International Journal of Geriatric Psychiatry, 1(2), 135–140.CrossRefGoogle Scholar
  58. Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., & De Stefano, N. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage, 17(1), 479–489.CrossRefGoogle Scholar
  59. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(S1), S208–SS19.CrossRefGoogle Scholar
  60. Szoeke, C., Robertson, J. S., Rowe, C. C., Yates, P., Campbell, K., Masters, C. L., Ames, D., Dennerstein, L., & Desmond, P. (2013). The Women's healthy ageing project: Fertile ground for investigation of healthy participants 'at risk' for dementia. International Review of Psychiatry, 25(6), 726–737.CrossRefGoogle Scholar
  61. Szoeke, C., Coulson, M., Campbell, S., & Dennerstein, L. (2016a). Cohort profile: Women’s healthy ageing project (WHAP)-a longitudinal prospective study of Australian women since 1990. Women's Midlife Health, 2(1), 5.CrossRefGoogle Scholar
  62. Szoeke, C., Lehert, P., Henderson, V. W., Dennerstein, L., Desmond, P., & Campbell, S. (2016b). Predictive factors for verbal memory performance over decades of ageing: Data from the Women's healthy ageing project. The American Journal of Geriatric Psychiatry, 24(10), 857–867.CrossRefGoogle Scholar
  63. Troyer, A. K. (2000). Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical and Experimental Neuropsychology, 22(3), 370–378.CrossRefGoogle Scholar
  64. van Dijk, E. J., Prins, N. D., Vrooman, H. A., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2008). Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences Rotterdam scan study. Stroke, 39(10), 2712–2719.CrossRefGoogle Scholar
  65. Verhaaren, B. F., Vernooij, M. W., de Boer, R., Hofman, A., Niessen, W. J., van der Lugt, A., & Ikram, M. A. (2013). High blood pressure and cerebral white matter lesion progression in the general population. Hypertension, 61(6), 1354–1359.CrossRefGoogle Scholar
  66. Vitali, C., Wellington, C. L., & Calabresi, L. (2014). HDL and cholesterol handling in the brain. Cardiovascular Research, 103(3), 405–413.CrossRefGoogle Scholar
  67. Vuorinen, M., Solomon, A., Rovio, S., Nieminen, L., Kåreholt, I., Tuomilehto, J., Soininen, H., & Kivipelto, M. (2011). Changes in vascular risk factors from midlife to late life and white matter lesions: A 20-year follow-up study. Dementia and Geriatric Cognitive Disorders, 31(2), 119–125.CrossRefGoogle Scholar
  68. Wang, R., Fratiglioni, L., Kalpouzos, G., Lövdén, M., Laukka, E. J., Bronge, L., Wahlund, L.-O., Bäckman, L., & Qiu, C. (2016). Mixed brain lesions mediate the association between cardiovascular risk burden and cognitive decline in old age: A population-based study. Alzheimer's & Dementia, 13, 247–256. Scholar
  69. Ward, M. A., Bendlin, B. B., McLaren, D. G., Hess, T. M., Callagher, C. L., Kastman, E. K., Rowley, H. A., Asthana, S., Carlsson, C. M., & Sager, M. A. (2010). Low HDL cholesterol is associated with lower gray matter volume in cognitively healthy adults. Frontiers in Aging Neuroscience, 2, 29.PubMedPubMedCentralGoogle Scholar
  70. Wechsler, D. (1955). Manual for the Wechsler adult intelligence scale.Google Scholar
  71. Welsh, K. A., Butters, N., Mohs, R. C., Beekly, D., Edland, S., Fillenbaum, G., & Heyman, A. (1994). The consortium to establish a registry for Alzheimer's disease (CERAD). Part V. a normative study of the neuropsychological battery. Neurology, 44(4), 609–609, 614.CrossRefGoogle Scholar
  72. Whitmer, R., Sidney, S., Selby, J., Johnston, S. C., & Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology, 64(2), 277–281.CrossRefGoogle Scholar
  73. Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847.CrossRefGoogle Scholar
  74. Wolf, P. A., D'Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1991). Probability of stroke: A risk profile from the Framingham study. Stroke, 22(3), 312–318.CrossRefGoogle Scholar
  75. Yoshita, M., Fletcher, E., & DeCarli, C. (2005). Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging. Topics in magnetic resonance imaging: TMRI, 16(6), 399–407.CrossRefGoogle Scholar
  76. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31(3), 1116–1128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneMelbourneAustralia
  3. 3.School of PsychologyAustralian Catholic UniversityMelbourneAustralia
  4. 4.Melbourne EpiCentre, Royal Melbourne HospitalUniversity of MelbourneMelbourneAustralia

Personalised recommendations