Skip to main content

Advertisement

Log in

Medial temporal lobe volumes in late-life depression: effects of age and vascular risk factors

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Substantial work associates late-life depression with hippocampal pathology. However, there is less information about differences in hippocampal subfields and other connected temporal lobe regions and how these regions may be influenced by vascular factors. Individuals aged 60 years or older with and without a DSM-IV diagnosis of Major Depressive Disorder completed clinical assessments and 3 T cranial MRI using a protocol allowing for automated measurement of medial temporal lobe subfield volumes. A subset also completed pseudo-continuous arterial spin labeling, allowing for the measurement of hippocampal cerebral blood flow. In 59 depressed and 21 never-depressed elders (mean age = 66.4 years, SD = 5.8y, range 60-86y), the depressed group did not exhibit statistically significant volumetric differences for the total hippocampus or hippocampal subfields but did exhibit significantly smaller volumes of the perirhinal cortex, specifically in the BA36 region. Additionally, age had a greater effect in the depressed group on volumes of the cornu ammonis, entorhinal cortex, and BA36 region. Finally, both clinical and radiological markers of vascular risk were associated with smaller BA36 volumes, while reduced hippocampal blood flow was associated with smaller hippocampal and cornu ammonis volumes. In conclusion, while we did not observe group differences in hippocampal regions, we observed group differences and an effect of vascular pathology on the BA36 region, part of the perirhinal cortex. This is a critical region exhibiting atrophy in prodromal Alzheimer’s disease. Moreover, the observed greater effect of age in the depressed groups is concordant with past longitudinal studies reporting greater hippocampal atrophy in late-life depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abi Zeid Daou, M., Boyd, B. D., Donahue, M. J., Albert, K., & Taylor, W. D. (2018). Anterior-posterior gradient differences in lobar and cingulate cortex cerebral blood flow in late-life depression. Journal of Psychiatric Research, 97, 1–7.

    PubMed  Google Scholar 

  • Aizenstein, H. J., Baskys, A., Boldrini, M., Butters, M. A., Diniz, B. S., Jaiswal, M. K., Jellinger, K. A., Kruglov, L. S., Meshandin, I. A., Mijajlovic, M. D., Niklewski, G., Pospos, S., Raju, K., Richter, K., Steffens, D. C., Taylor, W. D., & Tene, O. (2016). Vascular depression consensus report - a critical update. BMC Medicine, 14(1), 161.

    PubMed  PubMed Central  Google Scholar 

  • Alsop, D. C., Dai, W., Grossman, M., & Detre, J. A. (2010). Arterial spin labeling blood flow MRI: Its role in the early characterization of Alzheimer's disease. Journal of Alzheimer's disease : JAD, 20(3), 871–880.

    PubMed  Google Scholar 

  • Binnewijzend, M. A., Kuijer, J. P., Benedictus, M. R., van der Flier, W. M., Wink, A. M., Wattjes, M. P., et al. (2013). Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: A marker for disease severity. Radiology, 267(1), 221–230.

    PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    PubMed  CAS  Google Scholar 

  • Cao, B., Passos, I. C., Mwangi, B., Amaral-Silva, H., Tannous, J., Wu, M. J., Zunta-Soares, G. B., & Soares, J. C. (2017). Hippocampal subfield volumes in mood disorders. Molecular Psychiatry, 22(9), 1352–1358.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, W. H., Jung, W. S., Um, Y. H., Lee, C. U., Park, Y. H., & Lim, H. K. (2017). Cerebral vascular burden on hippocampal subfields in first-onset drug-naive subjects with late-onset depression. Journal of Affective Disorders, 208, 47–53.

    PubMed  Google Scholar 

  • Diniz, B. S., Butters, M. A., Albert, S. M., Dew, M. A., & Reynolds 3rd., C. F. (2013). Late-life depression and risk of vascular dementia and Alzheimer's disease: Systematic review and meta-analysis of community-based cohort studies. British Journal of Psychiatry, 202(5), 329–335.

    PubMed  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "mini-mental state" a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    PubMed  CAS  Google Scholar 

  • Fraser, M. A., Shaw, M. E., & Cherbuin, N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112, 364–374.

    PubMed  Google Scholar 

  • Gattringer, T., Enzinger, C., Ropele, S., Gorani, F., Petrovic, K. E., Schmidt, R., & Fazekas, F. (2012). Vascular risk factors, white matter hyperintensities and hippocampal volume in normal elderly individuals. Dementia and Geriatric Cognitive Disorders, 33(1), 29–34.

    PubMed  Google Scholar 

  • Geerlings, M. I., Sigurdsson, S., Eiriksdottir, G., Garcia, M. E., Harris, T. B., Sigurdsson, T., Gudnason, V., & Launer, L. J. (2013). Associations of current and remitted major depressive disorder with brain atrophy: The AGES-Reykjavik study. Psychological Medicine, 43(2), 317–328.

    PubMed  CAS  Google Scholar 

  • Gerritsen, L., Comijs, H. C., van der Graaf, Y., Knoops, A. J., Penninx, B. W., & Geerlings, M. I. (2011). Depression, hypothalamic pituitary adrenal Axis, and hippocampal and entorhinal cortex volumes-the SMART Medea study. Biological Psychiatry, 70, 373–380.

    PubMed  Google Scholar 

  • Guzman, V. A., Carmichael, O. T., Schwarz, C., Tosto, G., Zimmerman, M. E., Brickman, A. M., & Alzheimer's Disease Neuroimaging, I. (2013). White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment. Alzheimer's & dementia : the journal of the Alzheimer's Association, 9(5 Suppl), S124–S131.

    Google Scholar 

  • Hsu, F. C., Yuan, M., Bowden, D. W., Xu, J., Smith, S. C., Wagenknecht, L. E., Langefeld, C. D., Divers, J., Register, T. C., Carr, J. J., Williamson, J. D., Sink, K. M., Maldjian, J. A., & Freedman, B. I. (2016). Adiposity is inversely associated with hippocampal volume in African Americans and European Americans with diabetes. Journal of Diabetes and its Complications, 30(8), 1506–1512.

    PubMed  PubMed Central  Google Scholar 

  • Iadecola, C. (2010). The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathologica, 120(3), 287–296.

    PubMed  PubMed Central  Google Scholar 

  • Jefferson, A. L., Hohman, T. J., Liu, D., Haj-Hassan, S., Gifford, K. A., Benson, E. M., Skinner, J. S., Lu, Z., Sparling, J., Sumner, E. C., Bell, S., & Ruberg, F. L. (2015). Adverse vascular risk is related to cognitive decline in older adults. Journal of Alzheimer's disease : JAD, 44(4), 1361–1373.

    PubMed  Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.

    PubMed  Google Scholar 

  • Koenig, A. M., Bhalla, R. K., & Butters, M. A. (2014). Cognitive functioning and late-life depression. Journal of the International Neuropsychological Society, 20(5), 461–467.

    PubMed  PubMed Central  Google Scholar 

  • Lim, H. K., Hong, S. C., Jung, W. S., Ahn, K. J., Won, W. Y., Hahn, C., Kim, I., & Lee, C. U. (2012). Automated hippocampal subfields segmentation in late life depression. Journal of Affective Disorders, 143(1–3), 253–256.

    PubMed  Google Scholar 

  • Malykhin, N. V., Huang, Y., Hrybouski, S., & Olsen, F. (2017). Differential vulnerability of hippocampal subfields and anteroposterior hippocampal subregions in healthy cognitive aging. Neurobiology of Aging, 59, 121–134.

    PubMed  Google Scholar 

  • Miller, M. D., Paradis, C. F., Houck, P. R., Mazumdar, S., Stack, J. A., Rifai, A. H., Mulsant, B., & Reynolds III, C. F. (1992). Rating chronic medical illness burden in geropsychiatric practice and research: Application of the cumulative illness rating scale. Psychiatry Research, 41, 237–248.

    PubMed  CAS  Google Scholar 

  • Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382–389.

    PubMed  CAS  Google Scholar 

  • O'Brien, J. T., Lloyd, A. J., McKeith, I. G., Gholkar, A., & Ferrier, N. (2004). A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. American Journal of Psychiatry, 161, 2081–2090.

    PubMed  Google Scholar 

  • Plassard, A. J., McHugo, M., Heckers, S., & Landman, B. A. (2017). Multi-scale hippocampal Parcellation improves atlas-based segmentation accuracy. Proceedings of SPIE The International Society for Optical Engineering, 10133.

  • Provenzano, F. A., Muraskin, J., Tosto, G., Narkhede, A., Wasserman, B. T., Griffith, E. Y., Guzman, V. A., Meier, I. B., Zimmerman, M. E., Brickman, A. M., & Alzheimer's Disease Neuroimaging Initiative. (2013). White matter hyperintensities and cerebral amyloidosis: Necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurology, 70(4), 455–461.

    PubMed  PubMed Central  Google Scholar 

  • Raz, N., Daugherty, A. M., Bender, A. R., Dahle, C. L., & Land, S. (2015). Volume of the hippocampal subfields in healthy adults: Differential associations with age and a pro-inflammatory genetic variant. Brain Structure and Function, 220(5), 2663–2674.

    PubMed  CAS  Google Scholar 

  • Riddle, M., Potter, G. G., McQuoid, D. R., Steffens, D. C., Beyer, J. L., & Taylor, W. D. (2017). Longitudinal cognitive outcomes of clinical phenotypes of late-life depression. American Journal of Geriatric Psychiatry, 25, 1123–1134.

    PubMed  Google Scholar 

  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Forschler, A., Berthele, A., et al. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage, 59(4), 3774–3783.

    PubMed  Google Scholar 

  • Schmidt, M.F., Freeman, K.B., Windham, B.G., Griswold, M.E., Kullo, I.J., Turner, S.T., Mosley, T.H., Jr. (2016). Associations between serum inflammatory markers and hippocampal volume in a community sample. Journal of the American Geriatrics Society, 64(9), 1823–1829.

    PubMed  PubMed Central  Google Scholar 

  • Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2013). A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. American Journal of Geriatric Psychiatry, 21(2), 184–195.

    PubMed  Google Scholar 

  • Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R. W., & Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Inventory (M.I.N.I.): the development and validation of a structured diagnostic interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 20, 22–33.

  • Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908–3913.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10), 655–669.

    PubMed  CAS  Google Scholar 

  • Su, L., Faluyi, Y. O., Hong, Y. T., Fryer, T. D., Mak, E., Gabel, S., Hayes, L., Soteriades, S., Williams, G. B., Arnold, R., Passamonti, L., Rodríguez, P. V., Surendranathan, A., Bevan-Jones, R. W., Coles, J., Aigbirhio, F., Rowe, J. B., & O'Brien, J. T. (2016). Neuroinflammatory and morphological changes in late-life depression: The NIMROD study. British Journal of Psychiatry, 209(6), 525–526.

    PubMed  CAS  Google Scholar 

  • Taylor, W. D. (2014). Clinical practice. Depression in the elderly. The New England Journal of Medicine, 371(13), 1228–1236.

    PubMed  CAS  Google Scholar 

  • Taylor, W. D., McQuoid, D. R., & Krishnan, K. R. (2004). Medical comorbidity in late-life depression. International Journal of Geriatric Psychiatry, 19, 935–943.

    PubMed  Google Scholar 

  • Taylor, W. D., Steffens, D. C., Payne, M. E., MacFall, J. R., Marchuk, D. A., Svenson, I. K., & Krishnan, K. R. (2005). Influence of serotonin transporter promoter region polymorphisms on hippocampal volumes in late-life depression. Archives of General Psychiatry, 62, 537–544.

    PubMed  CAS  Google Scholar 

  • Taylor, W. D., Aizenstein, H. J., & Alexopoulos, G. S. (2013). The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Molecular Psychiatry, 18, 963–974.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor, W. D., McQuoid, D. R., Payne, M. E., Zannas, A. S., MacFall, J. R., & Steffens, D. C. (2014). Hippocampus atrophy and the longitudinal course of late-life depression. American Journal of Geriatric Psychiatry, 22(12), 1504–1512.

    PubMed  Google Scholar 

  • Teipel, S. J., Pruessner, J. C., Faltraco, F., Born, C., Rocha-Unold, M., Evans, A., Möller, H. J., & Hampel, H. (2006). Comprehensive dissection of the medial temporal lobe in AD: Measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. Journal of Neurology, 253(6), 794–800.

    PubMed  Google Scholar 

  • Tosto, G., Zimmerman, M. E., Hamilton, J. L., Carmichael, O. T., Brickman, A. M., & Alzheimer's Disease Neuroimaging, I. (2015). The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 11(12), 1510–1519.

    Google Scholar 

  • Wolf, P. A., D'Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1991). Probability of stroke: A risk profile from the Framingham study. Stroke, 22, 312–318.

    PubMed  CAS  Google Scholar 

  • Wolk, D. A., Das, S. R., Mueller, S. G., Weiner, M. W., Yushkevich, P. A., & Alzheimer's Disease Neuroimaging, I. (2017). Medial temporal lobe subregional morphometry using high resolution MRI in Alzheimer's disease. Neurobiology of Aging, 49, 204–213.

    PubMed  Google Scholar 

  • Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S. L., Gertje, E. C., Mancuso, L., Kliot, D., Das, S. R., & Wolk, D. A. (2015). Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, 36(1), 258–287.

    PubMed  Google Scholar 

  • Zannas, A. S., McQuoid, D. R., Payne, M. E., MacFall, J. R., Ashley-Koch, A., Steffens, D. C., Potter, G. G., & Taylor, W. D. (2014). Association of Gene Variants of the renin-angiotensin system with accelerated hippocampal volume loss and cognitive decline in old age. American Journal of Psychiatry, 171, 1214–1221.

    PubMed  Google Scholar 

Download references

Funding

This research was supported by National Institute of Mental Health grants R01 MH102246, R21 MH099218 and K24 MH110598 and CTSA award UL1 TR002243 from the National Center for Advancing Translational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren D. Taylor.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest and have no disclosures to report.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors deny any conflicts of interest and have no disclosures to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, W.D., Deng, Y., Boyd, B.D. et al. Medial temporal lobe volumes in late-life depression: effects of age and vascular risk factors. Brain Imaging and Behavior 14, 19–29 (2020). https://doi.org/10.1007/s11682-018-9969-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9969-y

Keywords

Navigation