Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks

Abstract

High-grade glioma (HGG) is a lethal cancer with poor outcome. Accurate preoperative overall survival (OS) time prediction for HGG patients is crucial for treatment planning. Traditional presurgical and noninvasive OS prediction studies have used radiomics features at the local lesion area based on the magnetic resonance images (MRI). However, the highly complex lesion MRI appearance may have large individual variability, which could impede accurate individualized OS prediction. In this paper, we propose a novel concept, namely brain connectomics-based OS prediction. It is based on presurgical resting-state functional MRI (rs-fMRI) and the non-local, large-scale brain functional networks where the global and systemic prognostic features rather than the local lesion appearance are used to predict OS. We propose that the connectomics features could capture tumor-induced network-level alterations that are associated with prognosis. We construct both low-order (by means of sparse representation with regional rs-fMRI signals) and high-order functional connectivity (FC) networks (characterizing more complex multi-regional relationship by synchronized dynamics FC time courses). Then, we conduct a graph-theoretic analysis on both networks for a jointly, machine-learning-based individualized OS prediction. Based on a preliminary dataset (N = 34 with bad OS, mean OS, ~400 days; N = 34 with good OS, mean OS, ~1030 days), we achieve a promising OS prediction accuracy (86.8%) on separating the individuals with bad OS from those with good OS. However, if using only conventionally derived descriptive features (e.g., age and tumor characteristics), the accuracy is low (63.2%). Our study highlights the importance of the rs-fMRI and brain functional connectomics for treatment planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aerts, H., Fias, W., Caeyenberghs, K., & Marinazzo, D. (2016). Brain networks under attack: Robustness properties and the impact of lesions. Brain, 139(12), 3063–3083.

    Article  PubMed  Google Scholar 

  2. Agarwal, S., Sair, H. I., & Pillai, J. J. (2017). The resting state fMRI regional homogeneity (ReHo) metrics KCC-ReHo & Cohe-ReHo are valid indicators of tumor-related neurovascular uncoupling. Brain Connectivity, 7(4), 228–235.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aibaidula, A., Lu, J.-F., Wu, J.-S., Zou, H.-J., Chen, H., Wang, Y.-Q., et al. (2015). Establishment and maintenance of a standardized glioma tissue bank: Huashan experience. Cell and Tissue Banking, 16(2), 271–281.

    Article  CAS  PubMed  Google Scholar 

  4. Alakorkko, T., Saarimaki, H., Glerean, E., Saramaki, J., & Korhonen, O. (2017). Effects of spatial smoothing on functional brain networks. The European Journal of Neuroscience, 46, 2471–2480.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alexander, A. L., Hurley, S. A., Samsonoy, A. A., Adluru, N., Hosseinbor, A. P., Mossahebi, P., et al. (2011). Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connectivity, 1, 423–446.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.

    Article  Google Scholar 

  7. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.

    Article  PubMed  Google Scholar 

  8. Balleine, B. W., & O'doherty, J. P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69.

    Article  PubMed  Google Scholar 

  9. Bartolomei, F., Bosma, I., Klein, M., Baayen, J. C., Reijneveld, J. C., Postma, T. J., et al. (2006). Disturbed functional connectivity in brain tumour patients: Evaluation by graph analysis of synchronization matrices. Clinical Neurophysiology, 117(9), 2039–2049.

    Article  PubMed  Google Scholar 

  10. Bisdas, S., Kirkpatrick, M., Giglio, P., Welsh, C., Spampinato, M., & Rumboldt, Z. (2009). Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: Ready for prime time in predicting short-term outcome and recurrent disease? American Journal of Neuroradiology, 30(4), 681–688.

    Article  CAS  PubMed  Google Scholar 

  11. Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  Google Scholar 

  12. Bosma, I., Reijneveld, J. C., Klein, M., Douw, L., Van Dijk, B. W., Heimans, J. J., et al. (2009). Disturbed functional brain networks and neurocognitive function in low-grade glioma patients: A graph theoretical analysis of resting-state MEG. Nonlinear Biomedical Physics, 3(1), 9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  CAS  Google Scholar 

  14. Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cairncross, J. G., Ueki, K., Zlatescu, M. C., Lisle, D. K., Finkelstein, D. M., Hammond, R. R., et al. (1998). Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. Journal of the National Cancer Institute, 90(19), 1473–1479.

    Article  CAS  PubMed  Google Scholar 

  16. Carbo, E. W., Hillebrand, A., Van Dellen, E., Tewarie, P., de Witt Hamer, P. C., Baayen, J. C., et al. (2017). Dynamic hub load predicts cognitive decline after resective neurosurgery. Scientific Reports, 7, 42117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlson, N. R. (2010). Physiology of behavior. Allyn & Bacon Boston.

  18. Cavada, C., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex, 10(3), 220–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, W., Delaloye, S., Silverman, D. H., Geist, C., Czernin, J., Sayre, J., et al. (2007). Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: A pilot study. Journal of Clinical Oncology, 25(30), 4714–4721.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., Zhang, H., Gao, Y., Wee, C. Y., Li, G., & Shen, D. (2016a). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, X., Zhang, H., & Shen, D. (2016b) Ensemble hierarchical high-order functional connectivity networks for MCI classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 18-25.

  22. Chen, X., Zhang, H., Lee, S.-W., & Shen, D. (2017). Hierarchical high-order functional connectivity networks and selective feature fusion for MCI classification. Neuroinformatics, 15(3), 271–284.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cochereau, J., Deverdun, J., Herbet, G., Charroud, C., Boyer, A., Moritz-Gasser, S., et al. (2016). Comparison between resting state fMRI networks and responsive cortical stimulations in glioma patients. Human Brain Mapping, 37(11), 3721–3732.

    Article  PubMed  Google Scholar 

  24. Collet, S., Valable, S., Constans, J., Lechapt-Zalcman, E., Roussel, S., Delcroix, N., et al. (2015). [18 F]-fluoro-l-thymidine PET and advanced MRI for preoperative grading of gliomas. NeuroImage: Clinical, 8, 448–454.

    Article  CAS  Google Scholar 

  25. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  26. Cui, Y., Tha, K. K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., et al. (2015). Prognostic imaging biomarkers in glioblastoma: Development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology, 278(2), 546–553.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., Mathalon, D., et al. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 5, 298–308.

    Article  CAS  Google Scholar 

  28. Davis, F. G., Freels, S., Grutsch, J., Barlas, S., & Brem, S. (1998). Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: An analysis based on surveillance, epidemiology, and end results (SEER) data, 1973–1991. Journal of Neurosurgery, 88(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Desmurget, M., Bonnetblanc, F., & Duffau, H. (2007). Contrasting acute and slow-growing lesions: A new door to brain plasticity. Brain, 130(4), 898–914.

    Article  PubMed  Google Scholar 

  30. Duffau, H. (2017). A two-level model of interindividual anatomo-functional variability of the brain and its implications for neurosurgery. Cortex, 86, 303–313.

    Article  PubMed  Google Scholar 

  31. Fan, Y., Gur, R. E., Gur, R. C., Wu, X., Shen, D., Calkins, M. E., & Davatzikos, C. (2008). Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study. Biological Psychiatry, 63(1), 118–124.

    Article  PubMed  Google Scholar 

  32. Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of human resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 22.

    PubMed  PubMed Central  Google Scholar 

  33. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.

    PubMed  PubMed Central  Google Scholar 

  34. Fuster, J. M. (1988). Prefrontal cortex. In Comparative Neuroscience and Neurobiology (pp. 107-109): Springer.

  35. Gazzaniga, M. S. (2009). The cognitive neurosciences IV. Cambridge: MA.

    Google Scholar 

  36. Ghumman, S., Fortin, D., Noel-Lamy, M., Cunnane, S., & Whittingstall, K. (2016). Exploratory study of the effect of brain tumors on the default mode network. Journal of Neuro-Oncology, 128(3), 437–444.

    Article  PubMed  Google Scholar 

  37. Gillies, R. J., Kinahan, P. E., & Hricak, H. (2015). Radiomics: Images are more than pictures, they are data. Radiology, 278(2), 563–577.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giovagnoli, A., Silvani, A., Colombo, E., & Boiardi, A. (2005). Facets and determinants of quality of life in patients with recurrent high grade glioma. Journal of Neurology, Neurosurgery & Psychiatry, 76(4), 562–568.

    Article  CAS  Google Scholar 

  39. Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., et al. (2016). The human connectome project's neuroimaging approach. Nature Neuroscience, 19(9), 1175–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a cortical area Parcellation from resting-state correlations. Cerebral Cortex, 26, 288–303.

    Article  PubMed  Google Scholar 

  41. Grabner, G., Kiesel, B., Wöhrer, A., Millesi, M., Wurzer, A., Göd, S., et al. (2016). Local image variance of 7 tesla SWI is a new technique for preoperative characterization of diffusely infiltrating gliomas: Correlation with tumour grade and IDH1 mutational status. European Radiology, 27(4), 1556–1567.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grandjean, J., Preti, M. G., Bolton, T. A., Buerge, M., Seifritz, E., Pryce, C. R., et al. (2017). Dynamic reorganization of intrinsic functional networks in the mouse brain. NeuroImage, 152, 497–508.

    Article  PubMed  Google Scholar 

  43. Grossman, S. A., Ye, X., Piantadosi, S., Desideri, S., Nabors, L. B., Rosenfeld, M., et al. (2010). Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clinical Cancer Research, 16(8), 2443–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, S., Yang, M., Medaglia, J. D., Gur, R. C., Gur, R. E., Satterthwaite, T. D., et al. (2017). Functional hypergraph uncovers novel covariant structures over neurodevelopment. Human Brain Mapping, 38(8), 3823–3835.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hart, M. G., Price, S. J., & Suckling, J. (2016a). Connectome analysis for pre-operative brain mapping in neurosurgery. British Journal of Neurosurgery, 30(5), 506–517.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hart, M. G., Price, S. J., & Suckling, J. (2016b). Functional connectivity networks for preoperative brain mapping in neurosurgery. Journal of Neurosurgery, 1–10.

  47. He, S.-Q., Dum, R. P., & Strick, P. (1995). Topographic organization of corticospinal projections from the frontal lobe: Motor areas on the medial surface of the hemisphere. Journal of Neuroscience, 15(5), 3284–3306.

    Article  CAS  PubMed  Google Scholar 

  48. Horwitz, B. (2003). The elusive concept of brain connectivity. NeuroImage, 19(2), 466–470.

    Article  PubMed  Google Scholar 

  49. Horwitz, B., Grady, C. L., Schlageter, N., Duara, R., & Rapoport, S. (1987). Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer's disease. Brain Research, 407(2), 294–306.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Q., Zhang, R., Hu, X., Ding, S., Qian, J., Lei, T., et al. (2014). Disturbed small-world networks and neurocognitive function in frontal lobe low-grade glioma patients. PLoS One, 9(4), e94095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378.

    Article  PubMed  Google Scholar 

  52. Itakura, H., Achrol, A. S., Mitchell, L. A., Loya, J. J., Liu, T., Westbroek, E. M., et al. (2015). Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine, 7(303), 138.

    Article  CAS  Google Scholar 

  53. Jain, R., Poisson, L. M., Gutman, D., Scarpace, L., Hwang, S. N., Holder, C. A., et al. (2014). Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the nonenhancing component of the tumor. Radiology, 272(2), 484–493.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jeremic, B., Grujicis, D., Antunovic, V., Djuric, L., et al. (1994). Influence of extent of surgery and tumor location on treatment outcome of patients with glioblastoma multiforme treated combined modality approach. Journal of Neuro-Oncology, 21(2), 177–185.

    Article  CAS  PubMed  Google Scholar 

  55. Kickingereder, P., Bonekamp, D., Nowosielski, M., Kratz, A., Sill, M., Burth, S., et al. (2016a). Radiogenomics of glioblastoma: Machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology, 281(3), 907–918.

    Article  PubMed  Google Scholar 

  56. Kickingereder, P., Burth, S., Wick, A., Götz, M., Eidel, O., Schlemmer, H.-P., et al. (2016b). Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology, 280(3), 880–889.

    Article  Google Scholar 

  57. Klein, M., . Taphoorn, M. J., Heimans, J. J., van der Ploeg, H. M., Vandertop, W. P., Smit, E. F., et al. (2001). Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. Journal of Clinical Oncology, 19(20), 4037–4047.

    Article  CAS  PubMed  Google Scholar 

  58. Klein, M., Heimans, J., Aaronson, N., Van der Ploeg, H., Grit, J., Muller, M., et al. (2002). Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. The Lancet, 360(9343), 1361–1368.

    Article  CAS  Google Scholar 

  59. Lacroix, M., Abi-Said, D., Fourney, D. R., Gokaslan, Z. L., Shi, W., DeMonte, F., et al. (2001). A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. Journal of Neurosurgery, 95(2), 190–198.

    Article  CAS  PubMed  Google Scholar 

  60. Law, M., Young, R. J., Babb, J. S., Peccerelli, N., Chheang, S., Gruber, M. L., et al. (2008). Gliomas: Predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging 1. Radiology, 247(2), 490–498.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Legler, J. M., Ries, L. A. G., Smith, M. A., Warren, J. L., Heineman, E. F., Kaplan, R. S., et al. (1999). Brain and other central nervous system cancers: Recent trends in incidence and mortality. Journal of the National Cancer Institute, 91(16), 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, L., Zhang, H., Rekik, I., Chen, X., Wang, Q., & Shen, D. (2016) Outcome prediction for patient with high-grade gliomas from brain functional and structural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 26-34.

  63. Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  65. Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.

    Article  CAS  PubMed  Google Scholar 

  66. Macyszyn, L., Akbari, H., Pisapia, J. M., Da, X., Attiah, M., Pigrish, V., et al. (2016). Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology, 18(3), 417–425.

    Article  PubMed  Google Scholar 

  67. Maesawa, S., Bagarinao, E., Fujii, M., Futamura, M., Motomura, K., Watanabe, H., et al. (2015). Evaluation of resting state networks in patients with gliomas: Connectivity changes in the unaffected side and its relation to cognitive function. PLoS One, 10(2), e0118072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maldaun, M. V., Suki, D., Lang, F. F., Prabhu, S., Shi, W., Fuller, G. N., et al. (2004). Cystic glioblastoma multiforme: Survival outcomes in 22 cases. Journal of Neurosurgery, 100(1), 61–67.

    Article  PubMed  Google Scholar 

  69. Mazurowski, M. A., Zhang, J., Peters, K. B., & Hobbs, H. (2014). Computer-extracted MR imaging features are associated with survival in glioblastoma patients. Journal of Neuro-Oncology, 120(3), 483–488.

    Article  PubMed  Google Scholar 

  70. Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 1436–1462.

  71. Mikl, M., Marecek, R., Hlustik, P., Pavlicova, M., Drastich, A., Chlebus, P., Brazdil, M., & Krupa, P. (2008). Effects of spatial smoothing on fMRI group inferences. Magnetic Resonance Imaging, 26, 490–503.

    Article  PubMed  Google Scholar 

  72. Nie, D., Zhang, H., Adeli, E., Liu, L., & Shen, D. (2016). 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 212–220.

  73. Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(7), 1718–1731.

    Article  PubMed  Google Scholar 

  74. Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., et al. (2013). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncology, 15(suppl 2), ii1–ii56.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173.

    Article  CAS  Google Scholar 

  76. Pope, W. B., Sayre, J., Perlina, A., Villablanca, J. P., Mischel, P. S., & Cloughesy, T. F. (2005). MR imaging correlates of survival in patients with high-grade gliomas. American Journal of Neuroradiology, 26(10), 2466–2474.

    PubMed  Google Scholar 

  77. Rahman, M., Abbatematteo, J., De Leo, E. K., Kubilis, P. S., Vaziri, S., Bova, F., et al. (2017). The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. Journal of Neurosurgery, 127(1), 123–131.

    Article  PubMed  Google Scholar 

  78. Ratey, J. J. (2001). A user's guide to the brain: Perception, attention, and the four theatres of the brain. Vintage.

  79. Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., & Delattre, J.-Y. (2012). Primary brain tumours in adults. The Lancet, 379(9830), 1984–1996.

    Article  Google Scholar 

  80. Rosazza, C., & Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurological Sciences, 32(5), 773–785.

    Article  PubMed  Google Scholar 

  81. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069.

    Article  PubMed  Google Scholar 

  82. Saksena, S., Jain, R., Narang, J., Scarpace, L., Schultz, L. R., Lehman, N. L., et al. (2010). Predicting survival in glioblastomas using diffusion tensor imaging metrics. Journal of Magnetic Resonance Imaging, 32(4), 788–795.

    Article  PubMed  Google Scholar 

  83. Sawaya, R., Hammoud, M., Schoppa, D., Hess, K. R., Wu, S. Z., Shi, W.-M., et al. (1998). Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery, 42(5), 1044–1055.

    Article  CAS  PubMed  Google Scholar 

  84. Simpson, J. R., Horton, J., Scott, C., Curran, W. J., Rubin, P., et al. (1993). Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: Results of three consecutive radiation therapy oncology group (RTOG) clinical trials. International Journal of Radiation Oncology, Biology, Physics, 26(2), 239–244.

    Article  CAS  PubMed  Google Scholar 

  85. Smith, J. S., Chang, E. F., Lamborn, K. R., Chang, S. M., Prados, M. D., Cha, S., et al. (2008). Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. Journal of Clinical Oncology, 26(8), 1338–1345.

    Article  PubMed  Google Scholar 

  86. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modeling methods for FMRI. NeuroImage, 54(2), 875–891.

    Article  PubMed  Google Scholar 

  87. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.

    Article  Google Scholar 

  88. Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (2012). Fundamental Neuroscience. Academic Press.

  89. Stam, C., Jones, B., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 17(1), 92–99.

    Article  CAS  PubMed  Google Scholar 

  90. Stensjøen, A. L., Solheim, O., Kvistad, K. A., Håberg, A. K., Salvesen, Ø., & Berntsen, E. M. (2015). Growth dynamics of untreated glioblastomas in vivo. Neuro-Oncology, 17(10), 1402–1411.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stupp, R., Dietrich, P.-Y., Kraljevic, S. O., Pica, A., Maillard, I., Maeder, P., et al. (2002). Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. Journal of Clinical Oncology, 20(5), 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  92. Stylli, S. S., Kaye, A. H., MacGregor, L., Howes, M., & Rajendra, P. (2005). Photodynamic therapy of high grade glioma–long term survival. Journal of Clinical Neuroscience, 12(4), 389–398.

    Article  CAS  PubMed  Google Scholar 

  93. Taphoorn, M., Schiphorst, A. K., Snoek, F., Lindeboom, J., Wolbers, J., Karim, A., et al. (1994). Cognitive functions and quality of life in patients with low-grade gliomas: The impact of radiotherapy. Annals of Neurology, 36(1), 48–54.

    Article  CAS  PubMed  Google Scholar 

  94. Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J., Scheltens, P., et al. (2013). Alzheimer's disease: Connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 34(8), 2023–2036.

    Article  PubMed  Google Scholar 

  95. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  CAS  PubMed  Google Scholar 

  96. van Dellen, E., Douw, L., Hillebrand, A., de Witt Hamer, P. C., Baayen, J. C., Heimans, J. J., et al. (2014). Epilepsy surgery outcome and functional network alterations in longitudinal MEG: A minimum spanning tree analysis. NeuroImage, 86, 354–363.

    Article  PubMed  Google Scholar 

  97. van Dellen, E., Douw, L., Hillebrand, A., Ris-Hilgersom, I. H., Schoonheim, M. M., Baayen, J. C., et al. (2012). MEG network differences between low-and high-grade glioma related to epilepsy and cognition. PLoS One, 7(11), e50122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Dellen, E., Hillebrand, A., Douw, L., Heimans, J. J., Reijneveld, J. C., & Stam, C. J. (2013). Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. NeuroImage, 83, 524–532.

    Article  PubMed  Google Scholar 

  99. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.

    Article  CAS  Google Scholar 

  100. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  101. Wang, H., Douw, L., Hernandez, J. M., Reijneveld, J., Stam, C., & Van Mieghem, P. (2010). Effect of tumor resection on the characteristics of functional brain networks. Physical Review E, 82(2), 021924.

    Article  CAS  Google Scholar 

  102. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015a). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009a). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5), 1511–1523.

    Article  Google Scholar 

  104. Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., et al. (2009b). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30(2), 638–649.

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Y., Wang, K., Li, S., Wang, J., Ma, J., Jiang, T., et al. (2015b). Patterns of tumor contrast enhancement predict the prognosis of anaplastic gliomas with IDH1 mutation. American Journal of Neuroradiology, 36(11), 2023–2029.

    Article  CAS  PubMed  Google Scholar 

  106. Wee, C. Y., Yap, P. T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., ... & Shen, D. (2012). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS One, 7(5), e37828.

  107. Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., & Initiative, A. s. D. N. (2016). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 10(2), 342–356.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu, J.-S., Zhou, L.-F., Tang, W.-J., Mao, Y., Hu, J., Song, Y.-Y., et al. (2007). Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: A prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery, 61(5), 935–949.

    Article  PubMed  Google Scholar 

  109. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, H., Ding, S., Hu, X., Yang, K., Xiao, C., Zou, Y., et al. (2013). Reduced efficiency of functional brain network underlying intellectual decline in patients with low-grade glioma. Neuroscience Letters, 543, 27–31.

    Article  CAS  PubMed  Google Scholar 

  111. Yu, Z., Tao, L., Qian, Z., Wu, J., Liu, H., Yu, Y., et al. (2016a). Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography. International Journal of Computer Assisted Radiology and Surgery, 11(11), 2007–2019.

    Article  PubMed  Google Scholar 

  112. Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., & Shen, D. (2016b). Correlation-weighted sparse group representation for brain network construction in MCI classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 37-45.

  113. Zacharaki, E. I., Morita, N., Bhatt, P., O'rourke, D., Melhem, E., & Davatzikos, C. (2012). Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. American Journal of Neuroradiology, 33(6), 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  114. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 50(3), 970–983.

    Article  PubMed  Google Scholar 

  115. Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with fMRI: Initial experience. Neurosurgery, 65(6 Suppl), 226.

    PubMed  PubMed Central  Google Scholar 

  116. Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., et al. (2016). Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. Journal of Alzheimer's Disease, 54(3), 1095–1112.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, H., Chen, X., Zhang, Y., & Shen, D. (2017a). Test-retest reliability of "high-order" functional connectivity in young healthy adults. Frontiers in Neuroscience, 11, 439.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang, L., Wang, Q., Gao, Y., Li, H., Wu, G., & Shen, D. (2017b). Concatenated spatially-localized random forests for hippocampus labeling in adult and infant MR brain images. Neurocomputing, 229, 3–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (NSFC) Grants (61473190, 61401271, 81471733, 81201156, and 81401395), the National Key Technology R&D Program of China (2014BAI04B05), and NIH grant (EB022880).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qian Wang or Junfeng Lu or Dinggang Shen.

Ethics declarations

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Huashan Institutional Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 4163 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, H., Wu, J. et al. Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imaging and Behavior 13, 1333–1351 (2019). https://doi.org/10.1007/s11682-018-9949-2

Download citation

Keywords

  • Survival
  • Prognosis
  • Glioma
  • Functional connectivity
  • Brain network
  • Connectomics
  • Machine learning