Brain Imaging and Behavior

, Volume 13, Issue 3, pp 819–829 | Cite as

Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition

  • Skye McDonaldEmail author
  • Katie I. Dalton
  • Jacqueline A. Rushby
  • Ramon Landin-Romero
Original Research


Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.


Traumatic brain injury White matter Diffuse axonal injury Social cognition 



KD was supported by an ARC Discovery Project 15010026. JR was supported by NHMRC Project Grant 1081923. RLR is supported by the ARC Centre of Excellence in Cognition and its Disorders Memory Node (CE11000102) and by the Appenzeller Neuroscience Fellowship in Alzheimer’s Disease. Additional support was provided from the NHMRC Centre of Research Excellence in Brain Recovery and a former ARC DP 1094083.

Compliance with ethical standard

Conflict of interest

SM receives royalties for The Awareness of Social Inference Test. There are no other conflicts to declare.

Ethical approval

All procedures performed were in accordance with the ethical standards of the Human Research Ethics Advisory Panel (HREAP approval reference 103,049) at the University of New South Wales and complied with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9906_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)


  1. Adamson, C., Yuan, W., Babcock, L., Leach, J. L., Seal, M. L., Holland, S. K., & Wade, S. L. (2013). Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Injury, 27(4), 454–463.Google Scholar
  2. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239. Scholar
  3. Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience, 20(7), 2683–2690.Google Scholar
  4. Alho, K., Rinne, T., Herron, T. J., & Woods, D. L. (2014). Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hearing Research, 307, 29–41.Google Scholar
  5. Alink, A., Euler, F., Kriegeskorte, N., Singer, W., & Kohler, A. (2012). Auditory motion direction encoding in auditory cortex and high-level visual cortex. Human Brain Mapping, 33(4), 969–978.Google Scholar
  6. Babbage, D. R., Yim, J., Zupan, B., Neumann, D., Tomita, M. R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277–285. Scholar
  7. Baggio, H. C., Segura, B., Ibarretxe-Bilbao, N., Valldeoriola, F., Marti, M. J., Compta, Y., ... Junqué, C. (2012). Structural correlates of facial emotion recognition deficits in Parkinson's disease patients. Neuropsychologia, 50(8), 2121-2128. doi:
  8. Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7), 333–344.Google Scholar
  9. Bibby, H., & McDonald, S. (2005). Theory of mind after traumatic brain injury. Neuropsychologia, 43(1), 99–114.Google Scholar
  10. Bigler, E. D. (2007). Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515–531. Scholar
  11. Bigler, E. D., & Maxwell, W. L. (2011). Neuroimaging and Neuropathology of TBI. NeuroRehabilitation, 28, 1–12. Scholar
  12. Bigler, E. D., Andersob, C. V., & Blatter, D. D. (2002). Temporal Lobe Morphology in Normal Aging and Traumatic Brain Injury. American Journal of Neuroradiology, 23(2), 255–266.Google Scholar
  13. Bond, M. R. (1976). Assessment of the psychosocial outcome of severe head injury. Acta Neurochirurgica, 34, 57–70.Google Scholar
  14. Brooks, D. N., Campsie, L., Symington, C., Beattie, A., & McKinlay, W. (1986). The five year outcome of severe blunt head injury: A relative's view. Journal of Neurology. Neurosurgery & Psychiatry, 49(7), 764–770.Google Scholar
  15. Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton Tests. San Antonio: Pearson PsychCorp Assessment.Google Scholar
  16. Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure & Function, 217(4), 783–796. Scholar
  17. Carrera, E., & Bogousslavsky, J. (2006). The thalamus and behaviour: effects of anatomically distinct strokes. Neurology, 66, 1817–1823.Google Scholar
  18. Champagne-Lavau, M., & Joanette, Y. (2009). Pragmatics, theory of mind and executive functions after a right-hemisphere lesion: Different patterns of deficits. Journal of Neurolinguistics, 22(5), 413–426. Scholar
  19. Charbonneau, S., Scherzer, B. P., Aspirot, D., & Cohen, H. (2003). Perception and production of facial prosodic emotions by chronic CVA patients. Neuropsychologia, 41(5), 605–613.Google Scholar
  20. Croker, V., & McDonald, S. (2005). Recognition of emotion from facial expression following traumatic brain injury. Brain Injury, 19, 787–789.Google Scholar
  21. D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., ..., Salmon, E. (2007). Distinct Regions of the Medial Prefrontal Cortex Are Associated with Self-referential Processing and Perspective Taking. Journal of Cognitive Neuroscience, 19(6), 935-944. doi:
  22. de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2010). Why don’t you feel how I feel? Insight into the absence of empathy after severe Traumatic Brain Injury. Neuropsychologia, 48, 3585–3595.Google Scholar
  23. de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526–535. Scholar
  24. de Sousa, A., McDonald, S., & Rushby, J. (2012). Changes in emotional empathy, affective responsivity and behaviour following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology.
  25. Downey, L. E., Mahoney, C. J., Buckley, A. H., Golden, H. L., Henley, S. M., Schmitz, N., ..., Warren, J. D. (2015). White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration. Neuroimage: Clinical, 8, 640-651. doi:
  26. Genova, H. M., Rajagopalan, V., Chiaravalloti, N., Binder, A., Deluca, J., & Lengenfelder, J. (2015). Facial affect recognition linked to damage in specific white matter tracts in traumatic brain injury. Social Neuroscience, 10(1), 27–34. Scholar
  27. Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C., Bonnelle, V., ..., Sharp, D. J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain: A Journal of Neurology, 134(2), 449-463.
  28. Kinsella, G., Packer, S., & Olver, J. (1991). Maternal reporting of behaviour following very severe blunt head injury. Journal of Neurology, Neurosurgery & Psychiatry, 54(5), 422–426.Google Scholar
  29. Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wagera, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage, 42, 998–1031.Google Scholar
  30. Kraus, J. F., Black, M. A., Hessol, N., Ley, P., Rokaw, W., Sullivan, C., ... Marshall, L. (1984). The incidence of acute brain injury and serious impairment in a defined population. American Journal of Epidemiology, 119, 186-201.Google Scholar
  31. Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J. R., & Piguet, O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic dementia. Brain, 139(3), 986–998. Scholar
  32. Leigh, R., Oishi, K., Hsu, J., Lindquist, M., Gottesman, R. F., Jarso, S., ... Hillis, A. E. (2013). Acute lesions that impair affective empathy. Brain: A Journal of Neurology, 136, 2539-2549.Google Scholar
  33. Leunissen, I., Coxon, J. P., Caeyenberghs, K., Michiels, K., Sunaert, S., & Swinnen, S. P. (2014). Task switching in traumatic brain injury relates to cortico-subcortical integrity. Human Brain Mapping, 35(5), 2459–2469.Google Scholar
  34. Lewis, R., & Noppeney, U. (2010). Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. The Journal of Neuroscience, 30(37), 12329–12339.Google Scholar
  35. Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., ..., Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564.
  36. Maas, A. I. R., Stocchetti, N., & Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 7(8), 728–741. Scholar
  37. Marsh, A. A., & Cardinale, E. M. (2014). When psychopathy impairs moral judgments: Neural responses during judgments about causing fear. Social Cognitive and Affective Neuroscience, 9(1), 3–11.Google Scholar
  38. Martin-Rodriguez, J. F., & Leon-Carrion, J. (2010). Theory of mind deficits in patients with acquired brain injury: A quantitative review. Neuropsychologia, 48, 1181–1191. Scholar
  39. McDonald, S., & Flanagan, S. (2004). Social Perception Deficits After Traumatic Brain Injury: Interaction Between Emotion Recognition, Mentalizing Ability, and Social Communication. Neuropsychology, 18(3), 572–579.Google Scholar
  40. McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A New Clinical Tool for Assessing Social Perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18, 219–238.Google Scholar
  41. McDonald, S., Rushby, J., Dalton, K., Landin-Romero, R., & Parkes, N. (2017). The role of the corpus callosum in social cognition deficits after Traumatic Brain Injury. Social Neuroscience, 1-9.
  42. Mike, A., Strammer, E., Aradi, M., Orsi, G., Perlaki, G., Hajnal, A., ..., Illes, Z. (2013). Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study. PLoS One, 8(12), e82422.
  43. Olson, I. A., Olotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: a review of fiindings on social and emotional processing. Brain, 130, 1718–1731. Scholar
  44. Palacios, E. M., Fernandez-Espejo, D., Junque, C., Sanchez-Carrion, R., Roig, T., Tormos, J. M., ..., Vendrell, P. (2011). Diffusion tensor imaging differences relate to memory deficits in diffuse traumatic brain injury. BMC Neurology, 11, 24.
  45. Perez, A. M., Adler, J., Kulkarni, N., Strain, J. F., Womack, K. B., Diaz-Arrastia, R., & Marquez de la Plata, C. D. (2014). Longitudinal white matter changes after traumatic axonal injury. Journal of Neurotrauma, 31(17), 1478–1485. Scholar
  46. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Society of Biological Psychiatry, 54, 504–514.Google Scholar
  47. Pierpaoli, P., & Basser, P. (1996). Toward a quantitive assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893–906.Google Scholar
  48. Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–847. Scholar
  49. Reitan, R. M. (1992). Trail Making Test. Tuscon: Reitan Neuropsychological Laboratories.Google Scholar
  50. Ruby, P., & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16(6), 988–999. Scholar
  51. Rushby, J. A., McDonald, S., Fisher, A. C., Kornfeld, E. J., De Blasio, F. M., Parks, N., & Piguet, O. (2016). Brain volume contributes to arousal and empathy dysregulation following severe traumatic brain injury. Neuroimage: Clinical, 12, 607–614. Scholar
  52. Russell, W., & Smith, A. (1961). Post-traumatic amnesia in closed head injury. Archives of Neurology, 5, 16–29. Scholar
  53. Sacchetti, B., Scelfo, B., & Strata, P. (2009). Cerebellum and emotional behavior. Neuroscience, 162(3), 756–762. Scholar
  54. Saldert, C., & Ahlsen, E. (2007). Inference in right hemisphere damaged individuals' comprehension: The role of sustained attention. Clinical Linguistics & Phonetics, 21(8), 637–655.Google Scholar
  55. Schmahmann, J. D., & Pandya, D. N. (2006). Fibre pathways of the brain. Oxford: Oxford University Press.Google Scholar
  56. Shamay-Tsoory, S. G. (2011). The neural bases for empathy. The Neuroscientist, 17(1), 18–24. Scholar
  57. Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., et al. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain, 131(Pt 2), 559–572. Scholar
  58. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. Scholar
  59. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., ..., Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208-S219.
  60. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., ..., Behrens, T. E. J (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487-1505.
  61. Symington, S. H., Paul, L. K., Symington, M. F., Ono, M., & Brown, W. S. (2010). Social cognition in individuals with agenesis of the corpus callosum. Social Neuroscience, 5(3), 296–308.Google Scholar
  62. Tate, R. L., Fenelon, B., Manning, M. L., & Hunter, M. (1991). Patterns of neuropsychological impairment after severe blunt head injury. Journal of Nervous and Mental Disease, 179, 117–126.Google Scholar
  63. Tate, R. L., McDonald, S., & Lulham, J. L. (1998). Traumatic brain injury: Severity of injury and outcome in an Australian community. Australian and New Zealand Journal of Public Health, 22, 11–15.Google Scholar
  64. Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., & Kolb, F. P. (2010). The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex, 46(7), 845–857. Scholar
  65. Tsivilis, D., Vann, S. D., Denby, C., Roberts, N., Mayes, A. R., Montaldi, D., & Aggleton, J. P. (2008). A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience, 11, 834–842.Google Scholar
  66. Veeramuthu, V., Narayanan, V., Kuo, T. L., Delano-Wood, L., Chinna, K., Bondi, M. W., ..., Ramli, N. (2015). Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J Neurotrauma, 32 (19), 1497-1509.
  67. Viano, D. C., Casson, I. R., Pellman, E. J., Zhang, E. J., King, A. I., & Yang, K. H. (2005). Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery, 57, 891–916.Google Scholar
  68. Wechsler, D. (1997). Wechsler Adult Intelligence Scale-Third Edition (WAIS-III). San Antonio: The Psychological Corporation.Google Scholar
  69. Williams, C., & Wood, R. L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259–267. Scholar
  70. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381–397.
  71. Wood, R. L., & Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14, 289–296. Scholar
  72. Xiong, K., Zhu, Y., Zhang, Y., Yin, Z., Zhang, J., Qiu, M., & Zhang, W. (2014). White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident. Brain Research, 1591, 86–92. Scholar
  73. Zundorf, I. C., Karnath, H.-O., & Lewald, J. (2014). The effect of brain lesions on sound localization in complex acoustic environments. Brain: A Journal of Neurology, 137(5), 1410–1418.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PsychologyUniversity of New South WalesSydneyAustralia
  2. 2.Brain and Mind CentreUniversity of SydneySydneyAustralia

Personalised recommendations