Presurgical localization and spatial shift of resting state networks in patients with brain metastases
- 29 Downloads
Abstract
Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.
Keywords
Brain metastases Resting state networks Independent component analysis Resting-state functional MRINotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 81401482) and the Educational Commission of Sichuan Province of China (No. 17ZA0269). P. Thompson is funded in part by the NIH, under grant U54 EB020403 from the Big Data to Knowledge (BD2K) program.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Supplementary material
References
- Andersen, S. M., Rapcsak, S. Z., & Beeson, P. M. (2010). Cost function masking during normalization of brains with focal lesions: still a necessity? NeuroImage, 53, 78–84.CrossRefPubMedPubMedCentralGoogle Scholar
- Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1001–1013.CrossRefPubMedPubMedCentralGoogle Scholar
- Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefPubMedGoogle Scholar
- Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage, 14, 486–500.CrossRefPubMedGoogle Scholar
- Briganti, C., Sestieri, C., Mattei, P. A., Esposito, R., Galzio, R. J., Tartaro, A., et al. (2012). Reorganization of functional connectivity of the language network in patients with brain gliomas. AJNR - American Journal of Neuroradiology, 33, 1983–1990.CrossRefPubMedGoogle Scholar
- Brownsett, S. L., Warren, J. E., Geranmayeh, F., Woodhead, Z., Leech, R., & Wise, R. J. (2014). Cognitive control and its impact on recovery from aphasic stroke. Brain : a Journal of Neurology, 137, 242–254.CrossRefGoogle Scholar
- Chang, E. L., Wefel, J. S., Maor, M. H., Hassenbusch 3rd, S. J., Mahajan, A., Lang, F. F., et al. (2007). A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery, 60, 277–283 discussion 283–274.CrossRefPubMedGoogle Scholar
- Charras, P., Herbet, G., Deverdun, J., de Champfleur, N. M., Duffau, H., Bartolomeo, P., et al. (2015). Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 63, 27–41.CrossRefPubMedGoogle Scholar
- Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefPubMedGoogle Scholar
- Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103, 13848–13853.CrossRefPubMedPubMedCentralGoogle Scholar
- Delattre, J. Y., Krol, G., Thaler, H. T., & Posner, J. B. (1988). Distribution of brain metastases. Archives of Neurology, 45, 741–744.CrossRefPubMedGoogle Scholar
- Ding, J. R., Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wu, G. R., et al. (2011). Topological fractionation of resting-state networks. PLoS One, 6, e26596.CrossRefPubMedPubMedCentralGoogle Scholar
- Duffau, H. (2001). Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 506–513.CrossRefPubMedPubMedCentralGoogle Scholar
- Esposito, R., Mattei, P. A., Briganti, C., Romani, G. L., Tartaro, A., & Caulo, M. (2012). Modifications of default-mode network connectivity in patients with cerebral glioma. PLoS One, 7, e40231.CrossRefPubMedPubMedCentralGoogle Scholar
- Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefPubMedGoogle Scholar
- Gavrilovic, I. T., & Posner, J. B. (2005). Brain metastases: epidemiology and pathophysiology. Journal of Neuro-Oncology, 75, 5–14.CrossRefPubMedGoogle Scholar
- Gooijers, J., Beets, I. A., Albouy, G., Beeckmans, K., Michiels, K., Sunaert, S., et al. (2016). Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain : a Journal of Neurology, 139, 2469–2485.CrossRefGoogle Scholar
- Hacker, C. D., Laumann, T. O., Szrama, N. P., Baldassarre, A., Snyder, A. Z., Leuthardt, E. C., et al. (2013). Resting state network estimation in individual subjects. NeuroImage, 82, 616–633.CrossRefPubMedPubMedCentralGoogle Scholar
- Huang, H., Ding, Z., Mao, D., Yuan, J., Zhu, F., Chen, S., et al. (2016). PreSurgMapp: a MATLAB toolbox for presurgical mapping of eloquent functional areas based on task-related and resting-state functional MRI. Neuroinformatics, 14, 421–438.CrossRefPubMedGoogle Scholar
- Jann, K., Kottlow, M., Dierks, T., Boesch, C., & Koenig, T. (2010). Topographic electrophysiological signatures of FMRI Resting State Networks. PLoS One, 5, e12945.CrossRefPubMedPubMedCentralGoogle Scholar
- Kokkonen, S. M., Nikkinen, J., Remes, J., Kantola, J., Starck, T., Haapea, M., et al. (2009). Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magnetic Resonance Imaging, 27, 733–740.CrossRefPubMedGoogle Scholar
- Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review of methods and clinical applications. AJNR - American Journal of Neuroradiology, 34, 1866–1872.CrossRefPubMedGoogle Scholar
- Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28, 1251–1266.CrossRefPubMedGoogle Scholar
- Liao, W., Chen, H., Feng, Y., Mantini, D., Gentili, C., Pan, Z., et al. (2010a). Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage, 52, 1549–1558.CrossRefPubMedGoogle Scholar
- Liao, W., Mantini, D., Zhang, Z., Pan, Z., Ding, J., Gong, Q., et al. (2010b). Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biological Cybernetics, 102, 57–69.CrossRefPubMedGoogle Scholar
- Lin, X., & DeAngelis, L. M. (2015). Treatment of brain metastases. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 3475–3484.CrossRefGoogle Scholar
- Liu, H., Buckner, R. L., Talukdar, T., Tanaka, N., Madsen, J. R., & Stufflebeam, S. M. (2009). Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. Journal of Neurosurgery, 111, 746–754.CrossRefPubMedPubMedCentralGoogle Scholar
- Martino, J., Honma, S. M., Findlay, A. M., Guggisberg, A. G., Owen, J. P., Kirsch, H. E., et al. (2011). Resting functional connectivity in patients with brain tumors in eloquent areas. Annals of Neurology, 69, 521–532.CrossRefPubMedPubMedCentralGoogle Scholar
- Mesulam, M. M. (1998). From sensation to cognition. Brain : a Journal of Neurology, 121(Pt 6), 1013–1052.CrossRefGoogle Scholar
- Mitchell, T. J., Hacker, C. D., Breshears, J. D., Szrama, N. P., Sharma, M., Bundy, D. T., et al. (2013). A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery, 73, 969–982 discussion 982–963.CrossRefPubMedPubMedCentralGoogle Scholar
- Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8, 102–108.CrossRefPubMedGoogle Scholar
- Qi, R., Zhang, L. J., Xu, Q., Zhong, J., Wu, S., Zhang, Z., et al. (2012). Selective impairments of resting-state networks in minimal hepatic encephalopathy. PLoS One, 7, e37400.CrossRefPubMedPubMedCentralGoogle Scholar
- Qiu, T. M., Yan, C. G., Tang, W. J., Wu, J. S., Zhuang, D. X., Yao, C. J., et al. (2014). Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochirurgica, 156, 2295–2302.CrossRefPubMedGoogle Scholar
- Rosazza, C., & Minati, L. (2011). Resting-state brain networks: literature review and clinical applications. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 32, 773–785.CrossRefGoogle Scholar
- Sair, H. I., Yahyavi-Firouz-Abadi, N., Calhoun, V. D., Airan, R. D., Agarwal, S., Intrapiromkul, J., et al. (2016). Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Human Brain Mapping, 37, 913–923.CrossRefPubMedGoogle Scholar
- Schwarzkopf, D. S., De Haas, B., & Rees, G. (2012). Better ways to improve standards in brain-behavior correlation analysis. Frontiers in Human Neuroscience, 6, 200.CrossRefPubMedPubMedCentralGoogle Scholar
- Shimony, J. S., Zhang, D., Johnston, J. M., Fox, M. D., Roy, A., & Leuthardt, E. C. (2009). Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Academic Radiology, 16, 578–583.CrossRefPubMedPubMedCentralGoogle Scholar
- Shinoura, N., Suzuki, Y., Yamada, R., Kodama, T., Takahashi, M., & Yagi, K. (2006). Restored activation of primary motor area from motor reorganization and improved motor function after brain tumor resection. AJNR - American Journal of Neuroradiology, 27, 1275–1282.PubMedGoogle Scholar
- Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.CrossRefPubMedGoogle Scholar
- Sills, A. K. (2005). Current treatment approaches to surgery for brain metastases. Neurosurgery, 57, S24–S32 discusssion S21–24.CrossRefPubMedGoogle Scholar
- Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045.CrossRefPubMedPubMedCentralGoogle Scholar
- Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17, 666–682.CrossRefPubMedPubMedCentralGoogle Scholar
- Stippich, C., Blatow, M., & Karkow, K. (2007). Presurgical functional MRI in patients with brain tumors. In C. Stippich (Ed.), Clinical functional MRI: Presurgical functional neuroimaging (pp. 87–134). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
- Sunaert, S. (2006). Presurgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging : JMRI, 23, 887–905.CrossRefPubMedGoogle Scholar
- Tie, Y., Rigolo, L., Norton, I. H., Huang, R. Y., Wu, W., Orringer, D., et al. (2014). Defining language networks from resting-state fMRI for surgical planning--a feasibility study. Human Brain Mapping, 35, 1018–1030.CrossRefPubMedGoogle Scholar
- Tieleman, A., Deblaere, K., Van Roost, D., Van Damme, O., & Achten, E. (2009). Preoperative fMRI in tumour surgery. European Radiology, 19, 2523–2534.CrossRefPubMedGoogle Scholar
- Vargo, M. M. (2017). Brain tumors and metastases. Physical Medicine and Rehabilitation Clinics of North America, 28, 115–141.CrossRefPubMedGoogle Scholar
- Vlieger, E. J., Majoie, C. B., Leenstra, S., & Den Heeten, G. J. (2004). Functional magnetic resonance imaging for neurosurgical planning in neurooncology. European Radiology, 14, 1143–1153.CrossRefPubMedGoogle Scholar
- Wood, J. M., Kundu, B., Utter, A., Gallagher, T. A., Voss, J., Nair, V. A., et al. (2011). Impact of brain tumor location on morbidity and mortality: a retrospective functional MR imaging study. AJNR - American Journal of Neuroradiology, 32, 1420–1425.CrossRefPubMedPubMedCentralGoogle Scholar
- Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14, 339–351.CrossRefPubMedGoogle Scholar
- Yu, Q., Plis, S. M., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., et al. (2011). Modular organization of functional network connectivity in healthy controls and patients with Schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103.PubMedGoogle Scholar
- Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery, 65, 226–236.PubMedPubMedCentralGoogle Scholar
- Zhang, H., Zuo, X. N., Ma, S. Y., Zang, Y. F., Milham, M. P., & Zhu, C. Z. (2010). Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis. NeuroImage, 51, 1414–1424.CrossRefPubMedGoogle Scholar