Advertisement

Occupational attainment influences longitudinal decline in behavioral variant frontotemporal degeneration

  • Lauren Massimo
  • Sharon X. Xie
  • Lior Rennert
  • Donna M. Fick
  • Amy Halpin
  • Katerina Placek
  • Andrew Williams
  • Katya Rascovsky
  • David J. Irwin
  • Murray Grossman
  • Corey T. McMillan
ORIGINAL RESEARCH
  • 109 Downloads

Abstract

To evaluate whether occupational attainment influences the trajectory of longitudinal cognitive decline in behavioral variant frontotemporal degeneration (bvFTD). Single-center, retrospective, longitudinal study. Sixty-three patients meeting consensus criteria for bvFTD underwent evaluation at the University of Pennsylvania Frontotemporal Degeneration Center. All patients were studied longitudinally on letter-guided fluency, category-naming fluency and Boston Naming Test (BNT). Occupational attainment was defined categorically by assigning each individual’s occupation to a professional or non-professional category. Linear mixed-effects models evaluated the interaction of neuropsychological performance change with occupational status. Regression analyses were used to relate longitudinal decline in executive function to baseline MRI grey matter atrophy. Higher occupational status was associated with a more severe slope of cognitive decline on letter-guided fluency and category-naming fluency, but not BNT. Faster rates of longitudinal decline on letter-guided and category-naming fluency were associated with more severe baseline grey matter atrophy in right dorsolateral and inferior frontal regions. Our longitudinal findings suggest that bvFTD individuals with higher lifetime cognitive experience demonstrate more rapid decline on measures of executive function. This finding converges with cross-sectional evidence suggesting that lifetime cognitive experiences contribute to heterogeneity in clinical progression in bvFTD.

Keywords

Frontotemporal degeneration Cognitive reserve Occupation MRI 

Notes

Funding

This work was supported in part by the National Institute on Aging (K99AG056054, P01AG17586, AG043503 and Dana Foundation).

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9852_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 KB)

References

  1. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.  https://doi.org/10.1007/s11065-006-9002-x.CrossRefPubMedGoogle Scholar
  2. Avants, B. B., Libon, D. J., Rascovsky, K., Boller, A., McMillan, C. T., Massimo, L., … Grossman, M. (2014). Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population. Neuroimage, 84, 698–711.  https://doi.org/10.1016/j.neuroimage.2013.09.048.CrossRefPubMedGoogle Scholar
  3. Bauer, E., Sammer, G., & Toepper, M. (2015). Trying to put the puzzle together: age and performance level modulate the neural response to increasing task load within left rostral prefrontal cortex. Biomed Research International, 2015, 415458.  https://doi.org/10.1155/2015/415458.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.CrossRefPubMedGoogle Scholar
  5. Chang, Y. T., Huang, C. W., Chen, N. C., Lin, K. J., Huang, S. H., Chang, Y. H., … Chang, C. C. (2016). Prefrontal lobe brain reserve capacity with resistance to higher global amyloid load and white matter hyperintensity burden in mild stage Alzheimer’s disease. PLoS One, 11(2), e0149056.  https://doi.org/10.1371/journal.pone.0149056.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edn.). Mahwah: Erlbaum.Google Scholar
  7. Cook, P. A., McMillan, C. T., Avants, B. B., Peelle, J. E., Gee, J. C., & Grossman, M. (2014). Relating brain anatomy and cognitive ability using a multivariate multimodal framework. Neuroimage, 99, 477–486.  https://doi.org/10.1016/j.neuroimage.2014.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fairjones, S. E., Vuletich, E. J., Pestell, C., & Panegyres, P. K. (2011). Exploring the role of cognitive reserve in early-onset dementia. American Journal Alzheimers Disease and Other Dementias, 26(2), 139–144.  https://doi.org/10.1177/1533317510397328.CrossRefGoogle Scholar
  9. Folstein, M. F., Folstein, S. F., & McHugh, P. R. (1975). “Mini mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.CrossRefPubMedGoogle Scholar
  10. Franzmeier, N., Duering, M., Weiner, M., Dichgans, M., Ewers, M., & Alzheimer’s Disease Neuroimaging, I (2017). Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology.  https://doi.org/10.1212/WNL.0000000000003711.PubMedGoogle Scholar
  11. Grossman, M., Xie, S. X., Libon, D. J., Wang, X., Massimo, L., Moore, P., … Trojanowski, J. Q. (2008). Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology, 70(22), 2036–2045.  https://doi.org/10.1212/01.wnl.0000303816.25065.bc.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hu, W. T., Seelaar, H., Josephs, K. A., Knopman, D. S., Boeve, B. F., Sorenson, E. J., … Grossman, M. (2009). Survival profiles of patients with frontotemporal dementia and motor neuron disease. Archives of Neurology, 66(11), 1359–1364.  https://doi.org/10.1001/archneurol.2009.253.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Irwin, D. J., McMillan, C. T., Suh, E., Powers, J., Rascovsky, K., Wood, E. M., … Grossman, M. (2014). Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology, 83(6), 502–509.  https://doi.org/10.1212/WNL.0000000000000668.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., … Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol, 9(1), 119–128.  https://doi.org/10.1016/S1474-4422(09)70299-6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston naming test. Philadelphia: Lea and Febiger.Google Scholar
  16. Knopman, D. S., Kramer, J. H., Boeve, B. F., Caselli, R. J., Graff-Radford, N. R., Mendez, M. F., … Mercaldo, N. (2008). Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain, 131(Pt 11), 2957–2968.  https://doi.org/10.1093/brain/awn234.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kwok, O. M., Underhill, A. T., Berry, J. W., Luo, W., Elliott, T. R., & Yoon, M. (2008). Analyzing longitudinal data with multilevel models: an example with individuals living with lower extremity intra-articular fractures. Rehabilitation Psychology, 53(3), 370–386.  https://doi.org/10.1037/a0012765.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.CrossRefPubMedGoogle Scholar
  19. Libon, D. J., Massimo, L., Moore, P., Coslett, H. B., Chatterjee, A., Aguirre, G. K., … Grossman, M. (2007a). Screening for frontotemporal dementias and Alzheimer’s disease with the Philadelphia brief assessment of cognition: a preliminary analysis. Dementia and Geriatric Cognitive Disorders, 24(6), 441–447.  https://doi.org/10.1159/000110577.CrossRefPubMedGoogle Scholar
  20. Libon, D. J., Massimo, L., Moore, P., Coslett, H. B., Chatterjee, A., Aguirre, G. K., … Grossman, M. (2007b). Differentiating the frontotemporal dementias from Alzheimer’s disease: the Philadelphia brief assessment of cognition. submitted.Google Scholar
  21. Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19(9), 1498–1507.  https://doi.org/10.1162/jocn.2007.19.9.1498.CrossRefPubMedGoogle Scholar
  22. Martins, R., Joanette, Y., & Monchi, O. (2015). The implications of age-related neurofunctional compensatory mechanisms in executive function and language processing including the new Temporal Hypothesis for Compensation. Frontiers in Human Neuroscience, 9, 221.  https://doi.org/10.3389/fnhum.2015.00221.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Massimo, L., Zee, J., Xie, S. X., McMillan, C. T., Rascovsky, K., Irwin, D. J., … Grossman, M. (2015). Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. Neurology, 84(20), 2070–2075.  https://doi.org/10.1212/WNL.0000000000001595.CrossRefPubMedPubMedCentralGoogle Scholar
  24. McMillan, C. T., Russ, J., Wood, E. M., Irwin, D. J., Grossman, M., McCluskey, L., … Lee, E. B. (2015). C9orf72 promoter hypermethylation is neuroprotective: neuroimaging and neuropathologic evidence. Neurology, 84(16), 1622–1630.  https://doi.org/10.1212/WNL.0000000000001495.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Peter, J., Kaiser, J., Landerer, V., Kostering, L., Kaller, C. P., Heimbach, B., … Kloppel, S. (2016). Category and design fluency in mild cognitive impairment: performance, strategy use, and neural correlates. Neuropsychologia, 93(Pt A), 21–29.  https://doi.org/10.1016/j.neuropsychologia.2016.09.024.CrossRefPubMedGoogle Scholar
  26. Placek, K., Massimo, L., Olm, C., Ternes, K., Firn, K., Van Deerlin, V., … McMillan, C. T. (2016). Cognitive reserve in frontotemporal degeneration: neuroanatomic and neuropsychological evidence. Neurology, 87(17), 1813–1819.  https://doi.org/10.1212/WNL.0000000000003250.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Possin, K. L., Chester, S. K., Laluz, V., Bostrom, A., Rosen, H. J., Miller, B. L., & Kramer, J. H. (2012). The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia. Journal of International Neuropsychological Society, 18(5), 834–844.  https://doi.org/10.1017/S1355617712000604.CrossRefGoogle Scholar
  28. Premi, E., Archetti, S., Pilotto, A., Seripa, D., Paghera, B., Padovani, A., & Borroni, B. (2015). Functional genetic variation in the serotonin 5-HTTLPR modulates brain damage in frontotemporal dementia. Neurobiol Aging, 36(1), 446–451.  https://doi.org/10.1016/j.neurobiolaging.2014.07.008.CrossRefPubMedGoogle Scholar
  29. Pudas, S., Josefsson, M., Rieckmann, A., & Nyberg, L. (2017). Longitudinal evidence for increased functional response in frontal cortex for older adults with hippocampal atrophy and memory decline. Cerebral Cortex.  https://doi.org/10.1093/cercor/bhw418.Google Scholar
  30. Puente, A. N., Lindbergh, C. A., & Miller, L. S. (2015). The relationship between cognitive reserve and functional ability is mediated by executive functioning in older adults. Clin Neuropsychology, 29(1), 67–81.  https://doi.org/10.1080/13854046.2015.1005676.CrossRefGoogle Scholar
  31. Rabinovici, G. D., Stephens, M. L., & Possin, K. L. (2015). Executive dysfunction. Continuum (Minneap Minn), 21(3 Behavioral Neurology and Neuropsychiatry), 646–659.  https://doi.org/10.1212/01.CON.0000466658.05156.54.Google Scholar
  32. Ramanan, S., Bertoux, M., Flanagan, E., Irish, M., Piguet, O., Hodges, J. R., & Hornberger, M. (2016). Longitudinal executive function and episodic memory profiles in behavioral-variant frontotemporal dementia and Alzheimer’s disease. Journal of the International Neuropsychological Society, 1–10.  https://doi.org/10.1017/S1355617716000837.
  33. Ranasinghe, K. G., Rankin, K. P., Lobach, I. V., Kramer, J. H., Sturm, V. E., Bettcher, B. M., … Miller, B. L. (2016). Cognition and neuropsychiatry in behavioral variant frontotemporal dementia by disease stage. Neurology, 86(7), 600–610.  https://doi.org/10.1212/WNL.0000000000002373.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., … Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 2456–2477.  https://doi.org/10.1093/brain/awr179.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.CrossRefGoogle Scholar
  36. Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta, 1822(3), 467–473.  https://doi.org/10.1016/j.bbadis.2011.09.012.CrossRefPubMedGoogle Scholar
  37. Stern, Y. (2003). The concept of cognitive reserve: a catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5), 589–593.  https://doi.org/10.1076/jcen.25.5.589.14571.CrossRefPubMedGoogle Scholar
  38. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.  https://doi.org/10.1016/j.neuropsychologia.2009.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stern, Y., Tang, M. X., Denaro, J., & Mayeux, R. (1995). Increased risk of mortality in Alzheimer’s disease patients with more advanced educational and occupational attainment. Annals of Neurology, 37, 590–595.CrossRefPubMedGoogle Scholar
  40. Stern, Y., Albert, S., Tang, M. X., & Tsai, W. Y. (1999). Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology, 53(9), 1942–1947.CrossRefPubMedGoogle Scholar
  41. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320.  https://doi.org/10.1109/TMI.2010.2046908.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., … Avants, B. B. (2014). Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage, 99, 166–179.  https://doi.org/10.1016/j.neuroimage.2014.05.044.CrossRefPubMedGoogle Scholar
  43. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397.  https://doi.org/10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xie, S. X., Forman, M. S., Farmer, J., Moore, P., Wang, Y., Wang, X., … Grossman, M. (2008). Factors associated with survival probability in autopsy-proven frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 79(2), 126–129.  https://doi.org/10.1136/jnnp.2006.110288.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lauren Massimo
    • 1
    • 2
  • Sharon X. Xie
    • 3
  • Lior Rennert
    • 3
  • Donna M. Fick
    • 2
  • Amy Halpin
    • 1
  • Katerina Placek
    • 1
  • Andrew Williams
    • 1
  • Katya Rascovsky
    • 1
  • David J. Irwin
    • 1
  • Murray Grossman
    • 1
  • Corey T. McMillan
    • 1
  1. 1.Frontotemporal Degeneration Center, Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.The Pennsylvania State University, College of NursingUniversity ParkUSA
  3. 3.Department of Biostatistics and Epidemiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations