Skip to main content
Log in

Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p < 0.001 uncorrected; cluster-extent threshold k = 100 voxels per cluster). With regards to TMS parameters, ALS patients showed mostly increased MEP/M ratio and modest prolongation of CMCT. MEP/M ratio was associated with GM density in (a) rolandic operculum/inferior frontal gyrus/precentral gyrus; anterior cingulate gyrus; inferior temporal gyrus; superior parietal lobule; cuneus; superior occipital gyrus and cerebellum (positive association) and (b) paracentral lobule/supplementary motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ALSFRS-R:

Revised Amyotrophic Lateral Sclerosis Functional Rating Scale

APB:

Abductor pollicis brevis

bvFTD:

Behavioral variant of frontotemporal dementia

CMCT:

Central motor conduction time

CSF:

Cerebrospinal fluid

cTBS:

Continuous theta burst stimulation

EMG:

Electromyographic

fMRI:

Functional magnetic resonance imaging

FWE:

Family-wise error

FWHM:

Full-width-at-halfmaximum

GM:

Gray matter

HC:

Healthy control

HR_3DT1w:

High resolution 3D–T1-weighted

LMN:

Lower motor neuron

MEP:

Motor evoked potentials

MNI:

Montreal Neurological Institute

MRI:

Magnetic resonance imaging

MT:

Motor threshold

RMT:

Resting motor threshold

SMA:

Supplementary motor area

SPM8:

Statistical Parametric Mapping

T2-FLAIR:

T2-Fluid attenuation inversion recovery

TE:

Echo time

TIV:

Total intracranial volume

TMS:

Transcranial magnetic stimulation

TR:

Time of repetition

TST:

Triple-stimulation technique

UMN:

Upper motor neuron

VBM:

Voxel-based morphometry

WM:

White matter

References

  • Agosta, F., Ferraro, P. M., Riva, N., Spinelli, E. G., Chiò, A., Canu, E., et al. (2016). Structural brain correlates of cognitive and behavioral impairment in MND. Human Brain Mapping, 37, 1614–1626.

    PubMed  Google Scholar 

  • Agosta, F., Valsasina, P., Absinta, M., Riva, N., Sala, S., Prelle, A., et al. (2011). Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cerebral Cortex, 21, 2291–2298.

    CAS  PubMed  Google Scholar 

  • Armand, J. (1982). The origin, course and terminations of corticospinal fibers in various mammals. Progress in Brain Research, 57, 329–360.

    CAS  PubMed  Google Scholar 

  • Bae, J. S., Ferguson, M., Tan, R., Mioshi, E., Simon, N., Burrell, J., et al. (2016). Dissociation of structural and functional integrities of the motor system in amyotrophic lateral sclerosis and behavioral-variant frontotemporal dementia. Journal of Clinical Neurology, 12, 209–217.

    PubMed  Google Scholar 

  • Barker, A. T., Freeston, I. L., Jalinous, R., & Jarratt, J. A. (1987). Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery, 20, 100–109.

    CAS  PubMed  Google Scholar 

  • Baumer, D., Butterworth, R., Menke, R. A. L., Talbot, K., Hofer, M., & Turner, M. R. (2014). Progressive hemiparesis (Mills Syndrome) with aphasia in amyotrophic lateral sclerosis. Neurology, 82, 457–458.

    PubMed  PubMed Central  Google Scholar 

  • Bede, P., Bokde, A. L., Byrne, S., Elamin, M., McLaughlin, R. L., Kenna, K., et al. (2013a). Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology, 81, 361–369.

    PubMed  PubMed Central  Google Scholar 

  • Bede, P., Bokde, A., Elamin, M., Byrne, S., McLaughlin, R. L., Jordan, N., et al. (2013b). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery and Psychiatry, 84, 766–773.

    PubMed  Google Scholar 

  • Bede, P., & Hardiman, O. (2014). Lessons of ALS imaging: Pitfalls and future directions - A critical review. Neuroimage Clinical, 4, 436–443.

  • Bede, P., Elamin, M., Byrne, S., McLaughlin, R. L., Kenna, K., Vajda, A., et al. (2015). Patterns of cerebral and cerebellar white matter degeneration in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 86, 468–470.

    CAS  PubMed  Google Scholar 

  • Bede, P., Iyer, P. M., Schuster, C., Elamin, M., Mclaughlin, R. L., Kenna, K., et al. (2016). The selective anatomical vulnerability of ALS: ‘disease-defining’ and ‘disease-defying’ brain regions. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 17, 561–570.

    PubMed  Google Scholar 

  • Bede, P., & Hardiman, O. (2017). Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017; 1–10. https://doi.org/10.1080/21678421.2017.1407795.

  • Berardelli, A., Inghilleri, M., Formisano, R., Accornero, N., & Manfredi, M. (1987). Stimulation of motor tracts in motor neuron disease. Journal of Neurology, Neurosurgery and Psychiatry, 50, 732–737.

    CAS  PubMed  Google Scholar 

  • Braak, H. (1976). A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Research, 109, 219–223.

    CAS  PubMed  Google Scholar 

  • Braak, H., Ludolph, A. C., Neumann, M., Ravits, J., & Del Tredici, K. (2017). Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathologica, 133, 79–90.

    CAS  PubMed  Google Scholar 

  • Brettschneider, J., Del Tredici, K., Toledo, J. B., Robinson, J. L., Irwin, D. J., Grossman, M., et al. (2013). Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 74, 20–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodal, A. (1969). Neurological Anatomy in Relation to Clinical Medicine. New York: Oxford University Press.

    Google Scholar 

  • Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. World Federation of Neurology Research Group on Motor Neuron Diseases. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, pp. 293–299.

  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50, 1148–1167.

    PubMed  PubMed Central  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.

    PubMed  Google Scholar 

  • Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., et al. (1999). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). Journal of Neurological Sciences, 169, 13–21.

    CAS  Google Scholar 

  • Cheah, B. C., Vucic, S., Krishnan, A. V., & Kiernan, M. C. (2010). Riluzole, neuroprotection and amyotrophic lateral sclerosis. Current Medicinal Chemistry, 17, 1942–1959.

    CAS  PubMed  Google Scholar 

  • Chenji, S., Jha, S., Lee, D., Brown, M., Seres, P., Mah, D., et al. (2016). Investigating Default Mode and Sensorimotor Network Connectivity in Amyotrophic Lateral Sclerosis. PLoS One, 11, e0157443.

    PubMed  PubMed Central  Google Scholar 

  • Christidi, F., Karavasilis, E., Ferentinos, P., Xirou, S., Velonakis, G., Rentzos, M., et al. (2017). Investigating the neuroanatomical substrate of pathological laughing and crying in amyotrophic lateral sclerosis with multimodal neuroimaging techniques. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. https://doi.org/10.1080/21678421.2017.1386689.

    Article  PubMed  Google Scholar 

  • Christidi, F., Karavasilis, E., Riederer, F., Zalonis, I., Ferentinos, P., Velonakis, G., et al. (2017). Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-017-9722-y.

    Article  Google Scholar 

  • Cosottini, M., Pesaresi, I., Piazza, S., Diciotti, S., Cecchi, P., Fabbri, S., et al. (2012). Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis. Experimental Neurology, 234, 169–180.

    PubMed  Google Scholar 

  • Day, B. L., Dressler, D., Maertens de Noordhout, A., Marsden, C. D., Nakashima, K., Rothwell, J. C., et al. (1989). Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. The Journal of Physiology (London), 412, 449–473.

    CAS  Google Scholar 

  • De Marco, M., Merico, A., Berta, G., Segato, N., Citton, V., Baglione, A., et al. (2015). Morphometric correlates of dysarthric deficit in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 464–472.

    PubMed  Google Scholar 

  • Desiato, M. T., & Caramia, M. D. (1997). Towards a neurophysiological marker of amyotrophic lateral sclerosis as revealed by changes in cortical excitability. Electroencephalography and Clinical Neurophysiology, 105, 1–7.

    CAS  PubMed  Google Scholar 

  • Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.

    PubMed  Google Scholar 

  • Di Lazzaro, V., Oliviero, A., Saturno, E., Pilato, F., Dileone, M., Sabatelli, M., et al. (2004). Motor cortex stimulation for amyotrophic lateral sclerosis: time for a therapeutic trial? Clinical Neurophysiology, 115, 1479–1485.

    PubMed  Google Scholar 

  • Di Lazzaro, V., Pellegrino, G., Ranieri, F., Florio, L., Musumeci, G., Caulo, M., et al. (2017). Effects of repetitive TMS of the motor cortex on disease progression and on glutamate and GABA levels in ALS: a proof of principle study. Brain Stimulation. https://doi.org/10.1016/j.brs.2017.05.003.

    Article  PubMed  Google Scholar 

  • Di Lazzaro, V., Ranieri, F., Capone, F., Pilato, F., Profice, P., Pellegrino, G., et al. (2014). Motor cortex stimulation for ALS: open label extension study of a previous small trial. Brain Stimulation, 2014, 7, 141–150.

  • Di Lazzaro, V., Ziemann, U., & Lemon, R. N. (2008). State of the art: physiology of transcranial motor cortex stimulation. Brain Stimulation, 1, 345–362.

    PubMed  Google Scholar 

  • Dum, R. P., & Strick, P. L. (1993). Cingulate Motor Areas. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of Cingulate Cortex and Limbic Thalamus. Boston, MA: Birkhäuser.

    Google Scholar 

  • Eisen, A., Entezari-Taher, M., & Stewart, H. (1996). Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology, 46, 1396–1404.

    CAS  PubMed  Google Scholar 

  • Eisen, A., Lemon, R., Kiernan, M. C., Hornberger, M., & Turner, M. R. (2015). Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis? Clinical Neurophysiology, 126, 1288–1294.

    PubMed  Google Scholar 

  • Eisen, A., Shytbel, W., Murphy, K., & Hoirch, M. (1990). Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle & Nerve, 13, 146–151.

    CAS  Google Scholar 

  • Eisen, A., Turner, M. R., & Lemon, R. (2014). Tools and talk: an evolutionary perspective on the functional deficits associated with amyotrophic lateral sclerosis. Muscle & Nerve, 49, pp. 469–477.

  • Eisen, A. A., & Shtybel, W. (1990). Clinical experience with transcranial magnetic stimulation. Muscle and Nerve, 13, 995–1011.

    CAS  PubMed  Google Scholar 

  • Emeryk-Szajewska, B., Kopec, J., & Karwanska, A. (1997). The reorganization of motor units in motor neuron disease. Muscle & Nerve, 20, 306–315.

    CAS  Google Scholar 

  • Fallini, C., Bassell, G. J., & Rossoll, W. (2012). The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Human Molecular Genetics, 21, 3703–3718.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete, T., Zach, N., Mujica-Parodi, L. R., & Turner, M. R. (2013). Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PLoS One, 8, e85190.

  • Filimon, F., Nelson, J. D., Hagler, D. J., & Sereno, M. I. (2007). Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage, 37, 1315–1328.

    PubMed  PubMed Central  Google Scholar 

  • Filimon, F., Rieth, C. A., Sereno, M. I., & Cottrell, G. W. (2015). Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cerebral Cortex, 25, 3144–3158.

    PubMed  Google Scholar 

  • Floeter, M. K., Katipally, R., Kim, M. P., Schanz, O., Stephen, M., Danielian, L., et al. (2014). Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders. Neurology, 83, 620–627.

    PubMed  PubMed Central  Google Scholar 

  • Floyd, A. G., Yu, Q. P., Piboolnurak, P., Tang, M. X., Fang, Y., Smith, W. A., et al. (2009). Transcranial magnetic stimulation in ALS: utility of central motor conduction tests. Neurology, 72, 498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fountoulakis, K. N., Tsolaki, M., Chantzi, H., & Kazis, A. (2000). Mini-Mental State Examination (MMSE): A validation study in Greece. American Journal of Alzheimers’ Diseases and Other Dementias, 15, 342–345.

    Google Scholar 

  • Fuqing, Z., Honghan, G., Fangjun, L., Ying, Z., Yufeng, Z., Renshi, X., et al. (2013). Altered motor network functional connectivity in amyotrophic lateral sclerosis: a resting-state functional magnetic resonance imaging study. Neuroreport, 24, 657–662.

    Google Scholar 

  • Furtula, J., Johnsen, B., Frandsen, J., Rodell, A., Christensen, P. B., Pugdahl, K., et al. (2013). Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI. Journal of Neurology, 260, 1535–1544.

    PubMed  Google Scholar 

  • Geevasinga, N., Menon, P., Yiannikas, C., Kiernan, M. C., & Vucic, S. (2014). Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis. European Journal of Neurology, 21, 1451–1457.

    CAS  PubMed  Google Scholar 

  • Geyer, S., Matelli, M., Luppino, G., & Zilles, K. (2000). Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology (Berlin), 202, 443–474.

    CAS  Google Scholar 

  • Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurology, 12, 368–380.

    PubMed  Google Scholar 

  • Grapperon, A. M., Verschueren, A., Duclos, Y., Confort-Gouny, S., Soulier, E., Loundou, A. D., et al. (2014). Association between structural and functional corticospinal involvement in amyotrophic lateral sclerosis assessed by diffusion tensor MRI and triple stimulation technique. Muscle & Nerve, 49, pp. 551–557.

  • Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12, 1–19.

    PubMed  Google Scholar 

  • Grieve, S. M., Menon, P., Korgaonkar, M. S., Gomes, L., Foster, S., Kiernan, M. C., et al. (2015). Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic Lateral Sclerorsis and Frontotemporal Degeneration, 17, 85–92.

    Google Scholar 

  • Han, J., & Ma, L. (2006). Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chinese Medical Sciences Journal, 21, 228–233.

    PubMed  Google Scholar 

  • Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Fox, P. T., Zilles, K., et al. (2012). Functional connectivity of the mid-cingulate cortex. Klinische Neurophysiologie, 43, p. P128.

  • Huynh, W., Simon, N. G., Grosskreutz, J., Turner, M. R., Vucic, S., & Kiernan, M. C. (2016). Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clinical Neurophysiology, 127, 2643–2660.

    PubMed  Google Scholar 

  • Karandreas, N., Papadopoulou, M., Kokotis, P., Papapostolou, A., Tsivgoulis, G., & Zambelis, T. (2007). Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 8, 112–118.

    PubMed  Google Scholar 

  • Kaufmann, P., Pullman, S. L., Shungu, D. C., Chan, S., Hays, A. P., Del Bene, M. L., et al. (2004). Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology, 62, 1753–1757.

    CAS  PubMed  Google Scholar 

  • Keller, J., Bohm, S., Aho-Ozhan, H. E. A., Loose, M., Gorges, M., Kassubek, J., et al. (2017). Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-017-9738-3.

    Article  Google Scholar 

  • Kew, J. J., Goldstein, L. H., Leigh, P. N., Abrahams, S., Cosgrave, N., Passingham, R. E., et al. (1993). The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain, 116, 1399–1323.

    PubMed  Google Scholar 

  • Keysers, C., & Gazzola, V. (2009). Expanding the mirror: vicarious activity for actions, emotions, and sensations. Current Opinion in Neurobiology, 19, 666–671.

    CAS  PubMed  Google Scholar 

  • Kim, H. J., Oh, S. I., de Leon, M., Wang, X., Oh, K. W., Park, J. S., et al. (2017). Structural explanation of poor prognosis of amyotrophic lateral sclerosis in the non-demented state. European Journal of Neurology, 24, 122–129.

    PubMed  Google Scholar 

  • Konrad, C., Henningsen, H., Bremer, J., Mock, B., Deppe, M., Buchinger, C., et al. (2002). Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Experimental Brain Research, 143, 51–56.

    PubMed  Google Scholar 

  • Konrad, C., Jansen, A., Henningsen, H., Sommer, J., Turski, A., Brooks, B. R., et al. (2006). Subcortical reorganization in amyotrophic lateral sclerosis. Experimental Brain Research, 172, 361–369.

    CAS  PubMed  Google Scholar 

  • Ligidakis, K., Piperos, P., Karandreas, N., & Dimitriou, D. (1990). Investigation of the central motor neuron using the method of transcranial magnetic stimulation. Encephalos, 27, 64–72. [articleGreek].

    Google Scholar 

  • Lule, D., Diekmann, V., Kassubek, J., Jurt, A., Birbaumer, N., Ludolph, A. C., et al. (2007). Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabilitation and Neural Repair, 21, 518–526.

    PubMed  Google Scholar 

  • Mackenzie, I. R., Frick, P., & Neumann, M. (2014). The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathologica Scandinavica, 127, 347–357.

    CAS  Google Scholar 

  • Menke, R. A., Proudfoot, M., Wuu, J., Andersen, P. M., Talbot, K., Benatar, M., et al. (2016). Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. Journal of Neurology, Neurosurgery and Psychiatry, 87, 580–588.

    PubMed  Google Scholar 

  • Menon, P., Kiernan, M. C., & Vucic, S. (2015). Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clinical Neurophysiology, 126, 803–809.

    PubMed  Google Scholar 

  • Miller, M. W. (1987). The origin of corticospinal projection neurons in rat. Experimental Brain Research, 67, 339–351.

    CAS  PubMed  Google Scholar 

  • Mills, K. R., & Nithi, K. A. (1998). Peripheral and central motor conduction in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 159, 82–87.

    CAS  PubMed  Google Scholar 

  • Miscio, G., Pisano, F., Mora, G., & Mazzini, L. (1999). Motor neuron disease: usefulness of transcranial magnetic stimulation in improving the diagnosis. Clinical Neurophysiology, 110, 975–981.

    CAS  PubMed  Google Scholar 

  • Mohammadi, B., Kollewe, K., Samii, A., Dengler, R., & Münte, T. F. (2011). Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Human Brain Mapping, 32, 750–758.

    PubMed  Google Scholar 

  • Mohammadi, B., Kollewe, K., Samii, A., Krampfl, K., Dengler, R., & Munte, T. F. (2009). Changes of resting state brain networks in amyotrophic lateral sclerosis. Experimental Neurology, 217, 147–153.

    PubMed  Google Scholar 

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience & Biobehavioral Reviews, 33, 975–980.

    Google Scholar 

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36, 341–349.

    Google Scholar 

  • Montuschi, A., Iazzolino, B., Calvo, A., Moglia, C., Lopiano, L., Restagno, G., et al. (2015). Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 168–173.

    PubMed  Google Scholar 

  • Murray, N. M. F. (1999). Motor Evoked Potentials. In M. Aminoff (Ed.), Electrodiagnosis in clinical neurology (4th edn.). Elsevier Saunders, pp. 549–568.

  • Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.

    CAS  PubMed  Google Scholar 

  • Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S., et al. (2012). The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery, and Psychiatry, 83, 102–108.

    PubMed  Google Scholar 

  • Pouget, J., Trefouret, S., & Attarian, S. (2000). Transcranial magnetic stimulation (TMS): compared sensitivity of different motor response parameters in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, pp. S45-S49.

  • Poujois, A., Schneider, F. C., Faillenot, I., Camdessanche, J. P., Vandenberghe, N., Thomas-Anterion, C., et al. (2013). Brain plasticity in the motor network is correlated with disease progression in amyotrophic lateral sclerosis. Human Brain Mapping, 34, 2391–2401.

    PubMed  Google Scholar 

  • Pradat, P.-F., & El Mendili, M. M. (2014). Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. BioMed Research International, 2014, 467560.

  • Prell, T., & Grosskreutz, J. (2013). The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, 14, 507–515.

    CAS  Google Scholar 

  • Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–590.

    CAS  Google Scholar 

  • Sach, M., Winkler, G., Glauche, V., Liepert, J., Heimbach, B., Koch, M. A., et al. (2004). Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain, 127, 340–350.

    PubMed  Google Scholar 

  • Sarica, A., Cerasa, A., Valentino, P., Yeatman, J., Trotta, M., Barone, S., et al. (2017). The corticospinal tract profile in amyotrophic lateral sclerosis. Human Brain Mapping, 38, 727–739.

    PubMed  Google Scholar 

  • Schmidt, R., Verstraete, E., de Reus, M. A., Veldink, J. H., van den Berg, L. H., & van den Heuvel, M. P. (2014). Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Human Brain Mapping, 35, 4386–4395.

    PubMed  PubMed Central  Google Scholar 

  • Schoenfeld, M. A., Tempelmann, C., Gaul, C., Kuhnel, G. R., Duzel, E., Hopf, J. M., et al. (2005). Functional motor compensation in amyotrophic lateral sclerosis. Journal of Neurology, 252, 944–952.

    PubMed  Google Scholar 

  • Schulte-Mattler, W. J., Muller, T., & Zierz, S. (1999). Transcranial magnetic stimulation compared with upper motor neuron signs in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 170, 51–56.

    CAS  PubMed  Google Scholar 

  • Schulthess, I., Gorges, M., Muller, H. P., Lule, D., Del Tredici, K., Ludolph, A. C., & Kassubek, J. (2016). Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Scientific Reports, 6, 38391.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, D., Cui, L., Fang, J., Cui, B., Li, D., & Tai, H. (2016). Voxel-Wise Meta-Analysis of Gray Matter Changes in Amyotrophic Lateral Sclerosis. Frontiers in Aging Neuroscience, 30, 64.

    Google Scholar 

  • Stefan, K., Kunesch, E., Benecke, R., & Classen, J. (2001). Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Annals of Neurology, 49, 536–539.

    CAS  PubMed  Google Scholar 

  • Strigaro, G., Ruge, D., Chen, J. C., Marshall, L., Desikan, M., Cantello, R., et al. (2015). Interaction between visual and motor cortex: a transcranial magnetic stimulation study. The Journal of Physiology, 593, 2365–2377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, R. H., Devenney, E., Dobson-Stone, C., Kwok, J. B., Hodges, J. R., Kiernan, M. C., et al. (2014). Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum. PLoS ONE, 9(8), e105632.

    PubMed  PubMed Central  Google Scholar 

  • Thompson, P. D., Day, B. L., Rothwell, J. C., Dick, J. P., Cowan, J. M., Asselman, P., et al. (1987). The interpretation of electromyographic responses to electrical stimulation of the motor cortex in disease of the upper motor neurone. Journal of the Neurological Sciences, 80, 91–110.

    CAS  PubMed  Google Scholar 

  • Triggs, W. J., Menkes, D., Onorato, J., Yan, R. S., Young, M. S., Newell, K., et al. (1999). Transcranial magnetic stimulation identifies upper motor neuron involvement in motor neuron disease. Neurology, 53, 605–611.

    CAS  PubMed  Google Scholar 

  • Tsermentseli, S., Leigh, P. N., & Goldstein, L. H. (2012). The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction. Cortex, 48, 166–182.

    PubMed  Google Scholar 

  • Turner, M. R., & Kiernan, M. C. (2012). Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis, 13, 245–250.

    PubMed  Google Scholar 

  • Turner, M. R., Kiernan, M. C., Leigh, P. N., & Talbot, K. (2009). Biomarkers in amyotrophic lateral sclerosis. The Lancet Neurology, 8, 94–109.

    CAS  PubMed  Google Scholar 

  • Turner, M. R., & Vestraete, E. (2015). What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Current Neurology and Neuroscience Reports, 15, 45–56.

    PubMed  PubMed Central  Google Scholar 

  • Uozumi, T., Tsuji, S., & Murai, Y. (1991). Motor potentials evoked by magnetic stimulation of the motor cortex in normal subjects and patients with motor disorders. Electroencephalography and Clinical Neurophysiology, 81, 251–256.

    CAS  PubMed  Google Scholar 

  • van der Graaff, M. M., de Jong, J. M., Baas, F., & de Visser, M. (2009). Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscular Disorders, 19, 53–58.

    PubMed  Google Scholar 

  • Verstraete, E., Turner, M. R., Grosskreutz, J., Filippi, M., & Benatar, M. on Behalf of the Attendees of the 4th NISALS Meeting. (2015). Mind the gap: the mismatch between clinical and imaging metrics in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 524–529.

  • Vucic, S., & Kiernan, M. C. (2006). Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain, 129, 2436–2446.

    PubMed  Google Scholar 

  • Vucic, S., & Kiernan, M. C. (2013). Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handbook of Clinical Neurology, 116, 561–575.

    PubMed  Google Scholar 

  • Vucic, S., Nicholson, G. A., & Kiernan, M. C. (2008). Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain, 131, 1540–1550.

    PubMed  Google Scholar 

  • Vucic, S., Ziemann, U., Eisen, A., Hallett, M., & Kiernan, M. C. (2013a). Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. Journal of Neurology Neurosurgery and Psychiatry, 84, 1161–1170.

    Google Scholar 

  • Vucic, S., Lin, C. S., Cheah, B. C., Murray, J., Menon, P., Krishnan, A. V., et al. (2013b). Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain, 136, 1361–1370.

    PubMed  Google Scholar 

  • Wagner, T., Eden, U., Fregni, F., Valero-Cabre, A., Ramos-Estebanez, C., Pronio-Stelluto, V., et al. (2008). Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Experimental Brain Research, 186, 539–550.

    PubMed  PubMed Central  Google Scholar 

  • Walberg, F., & Brodal, A. (1953). Pyramidal tract fibres from temporal and occipital lobes. Brain, 76, 491–508.

    CAS  PubMed  Google Scholar 

  • Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. (2005). The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. European Journal of Neurosciences, 22, 235–246.

    Google Scholar 

  • Wong, J. C. T., Concha, L., Beaulieu, C., Johnston, W., Allen, P. S., & Kalra, S. (2007). Spatial profiling of the corticospinal tract in amyotrophic lateral sclerosis using diffusion tensor imaging. Journal of Neuroimaging, 17, 234–240.

    PubMed  Google Scholar 

  • Zanette, G., Forgione, A., Manganotti, P., Fiaschi, A., & Tamburin, S. (2008). The effect of repetitive transcranial magnetic stimulation on motor performance, fatigue and quality of life in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 270, 18–22.

    PubMed  Google Scholar 

  • Zhang, J., Yin, X., Zhao, L., Evans, A. C., Song, L., Xie, B., et al. 2014. Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. Journal of Neurology, 261, 412–421.

    PubMed  Google Scholar 

  • Zhou, C., Hu, X., Hu, J., Liang, M., Yin, X., Chen, L., et al. (2016). Altered brain network in amyotrophic lateral sclerosis: a resting graph theory-based network study at voxel-wise level. Frontiers in Neuroscience, 10, 204.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, F., Gong, H., Li, F., Zhuang, Y., Zang, Y., Xu, R., et al. (2013). Altered motor network functional connectivity in amyotrophic lateral sclerosis: a resting-state functional magnetic resonance imaging study. Neuroreport, 24, 657–662.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study did not receive any funding. F.C. was supported by the IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE - SIEMENS PROGRAM (SPHA:11118/13a) and IKY SHORT TERMS PROGRAM (2013-ΠΕ2-SHORT TERMS-18671). We acknowledge Odysseas Benekos, Giannis Spandonis and the Philips Medical System for providing all necessary research keys for MRI sequence acquisition. We also acknowledge the radiologists-technologists of Research Radiology & Medical Imaging Department (Ioannis Gkerles, Christos Lioulios, Anestis Passalis, Efstathios Xenos) for conducting participants’ MR scanning. Finally, we would like to thank patients with ALS and their families, as well as healthy volunteers for their willingness to participate to the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foteini Christidi.

Ethics declarations

Ethical publication statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Foteini Christidi and Efstratios Karavasilis shared first authorship. Ioannis Evdokimidis and Nikolaos Karandreas shared last authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christidi, F., Karavasilis, E., Velonakis, G. et al. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging and Behavior 12, 1730–1741 (2018). https://doi.org/10.1007/s11682-018-9841-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9841-0

Keywords

Navigation