Longitudinal score prediction for Alzheimer’s disease based on ensemble correntropy and spatial–temporal constraint

  • Baiying Lei
  • Wen Hou
  • Wenbin Zou
  • Xia Li
  • Cishen Zhang
  • Tianfu Wang


Neuroimaging data has been widely used to predict clinical scores for automatic diagnosis of Alzheimer’s disease (AD). For accurate clinical score prediction, one of the major challenges is high feature dimension of the imaging data. To address this issue, this paper presents an effective framework using a novel feature selection model via sparse learning. In contrast to previous approaches focusing on a single time point, this framework uses information at multiple time points. Specifically, a regularized correntropy with the spatial–temporal constraint is used to reduce the adverse effect of noise and outliers, and promote consistent and robust selection of features by exploring data characteristics. Furthermore, ensemble learning of support vector regression (SVR) is exploited to accurately predict AD scores based on the selected features. The proposed approach is extensively evaluated on the Alzheimer’s disease neuroimaging initiative (ADNI) dataset. Our experiments demonstrate that the proposed approach not only achieves promising regression accuracy, but also successfully recognizes disease-related biomarkers.


Alzheimer’s disease Correntropy Ensemble learning Longitudinal score prediction Spatial–temporal constraint 



Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database ( As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:


This study was funded partly by National Natural Science Foundation of China (Nos. 61771321, 61501305 and 81771922), National Natural Science Foundation of Guangdong Province (Nos.2017A030313377 and 2016A030313047), Shenzhen Key Basic Research Project (Nos. KQJSCX20170327151357330, JCYJ20170302153337765, JCYJ20160307154003475 JCYJ20150525092940982 and 201502007), Shenzhen Peacock Plan (NO. KQTD2016053112051497), the Interdisciplinary Innovation Team of Shenzhen University, and the National Natural Science Foundation of Shenzhen University (Nos. 827 − 000152, 2016077 and 201565 and 2016089). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. HoffmannLa Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aguilar, C., Westman, E., Muehlboeck, J. S., et al. (2013). Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Research, 212(2), 89–98.CrossRefPubMedGoogle Scholar
  2. Alzheimer’s Association. (2015). 2015 Alzheimer’s disease facts and figures. Alzheimers Dement, 11(3), 332–384.CrossRefGoogle Scholar
  3. Boyd, S., Xiao, L., & Mutapcic, A. (2003). Subgradient Methods.Google Scholar
  4. Che, D., Liu, Q., Rasheed, K., & Tao, X. (2011). Decision tree and ensemble learning algorithms with their applications in bioinformatics. Advances in Experimental Medicine and Biology, 696, 191–199.CrossRefPubMedGoogle Scholar
  5. Chen, X., Pan, W., Kwok, J. T., & Carbonell, J. G. (2009). Accelerated gradient method for multi-task sparse learning problem. In 9th IEEE International Conference on Data Mining (pp. 746–751).Google Scholar
  6. Convit, A., De Asis, J., De Leon, M. J., Tarshish, C. Y., De Santi, S., & Rusinek, H. (2000). Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiology of Aging, 21(1), 19–26.CrossRefPubMedGoogle Scholar
  7. Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage, 47(4), 1363–1370.CrossRefPubMedGoogle Scholar
  8. Eskildsen, S. F., Coupé, P., Fonov, V. S., Pruessner, J. C., & Collins, D. L. (2015). Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiology of Aging, 36, S23–S31.CrossRefPubMedGoogle Scholar
  9. Fan, Y., Kaufer, D., & Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. ISBI (pp. 852–855).Google Scholar
  10. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  11. Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F.-B., Elgendi, M., Cichocki, A., & Dauwels, J. (2015). A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease. Journal of Neural Engineering, 12(1), 16018.CrossRefGoogle Scholar
  12. Hao, X., Yao, X., Yan, J., et al. (2016). Identifying Multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer’s disease. Neuroinformatics, 14(4), 1–14.CrossRefGoogle Scholar
  13. Hao, X., Li, C., Yan, J., et al. (2017). Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. In Bioinformatics, 33(14), i341-i349.CrossRefGoogle Scholar
  14. He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in Neural Information Processing Systems, 18, 507–514.Google Scholar
  15. He, R., Tan, T., Wang, L., & Zheng, W. (2012). L2,1 regularized correntropy for robust feature selection. CVPR (pp. 2504–2511).Google Scholar
  16. Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., Johnson, S. C. & Alzheimer’s Disease Neuroimaging Initiative. (2009). Spatially augmented LP boosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 48(1), 138–149.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jie, B., Liu, M., Liu, J., Zhang, D., & Shen, D. (2017). Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Transactions on Biomedical Engineering, 64(1), 238–249.CrossRefPubMedGoogle Scholar
  18. Kochanek, K. D., Xu, J., Murphy, S. L., Minino, A. M., & Kung, H. C. (2012). National vital statistics reports deaths: final data for 2009. National Center for Health Statistics, 60(3), 1–117.Google Scholar
  19. Kuncheva, L. I., Rodriguez, J. J., Plumpton, C. O., Linden, D. E. J., & Johnston, S. J. (2010). Random subspace ensembles for FMRI classification. IEEE Transactions on Medical Imaging, 29(2), 531–542.CrossRefPubMedGoogle Scholar
  20. Lei, B., Chen, S., Ni, D., Wang, T. & Alzheimer’s Disease Neuroimaging Initiative. (2016). Discriminative learning for Alzheimer’s disease diagnosis via canonical correlation analysis and multimodal fusion. Frontiers in Aging Neuroscience, 8, 77.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Lei, B., Chen, S., Ni, D., & Wang, T. (2017). Relational-regularized discriminative sparse learning for Alzheimer’s disease diagnosis. IEEE Transactions on Cybernetics, 47(4), 1102–1113.CrossRefPubMedGoogle Scholar
  22. Liu, J., & Ye, J. (2010). Efficient l1/lq norm regularization. arXiv Prepr. arXiv, 1009.4766, 1–19.Google Scholar
  23. Liu, W., Pokharel, P. P., & Principe, J. C. (2007). Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 55(11), 5286–5298.CrossRefGoogle Scholar
  24. Liu, M., Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2012). Ensemble sparse classification of Alzheimer’s disease. Neuroimage, 60(2), 1106–1116.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Liu, X., Tosun, D., Weiner, M. W., Schuff, N. & Alzheimer’s Disease Neuroimaging Initiative.(2013). Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage, 83, 148–157.CrossRefPubMedGoogle Scholar
  26. Liu, F., Wee, C. Y., Chen, H., & Shen, D. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. Neuroimage, 84, 466–475.CrossRefPubMedGoogle Scholar
  27. Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage, 44(4), 1415–1422.CrossRefPubMedGoogle Scholar
  28. Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 2412–2414.CrossRefPubMedGoogle Scholar
  29. Nesterov, Y. (2013). Gradient methods for minimizing composite function. Mathematical Programming, 140(1), 125–161.CrossRefGoogle Scholar
  30. Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization with application to fMRI brain decoding. Information Processing in Medical Imaging, 22, 612–623.CrossRefPubMedGoogle Scholar
  31. Ota, K., Oishi, N., Ito, K., & Fukuyama, H. (2015). Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer’s disease. Journal of Neuroscience Methods, 256, 168–183.CrossRefPubMedGoogle Scholar
  32. Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141(11), 1356–1364.CrossRefPubMedGoogle Scholar
  33. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.CrossRefPubMedGoogle Scholar
  34. Shen, D., Resnick, S. M., & Davatzikos, C. (2003). 4D HAMMER image registration method for longitudinal study of brain changes. Human Brain Mapping, 1–8.Google Scholar
  35. Shen, L., Kim, S., Qi, Y., et al. (2011). Identifying neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. Multimodal Brain Image Analysis, 7012, 27–34.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Shi, F., Wang, L., Dai, Y., Gilmore, J. H., Lin, W., & Shen, D. (2012). LABEL: pediatric brain extraction using learning-based meta-algorithm. Neuroimage, 62(3), 1975–1986.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.CrossRefPubMedGoogle Scholar
  38. Suk, H. I., Lee, S.-W., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2016). Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Structure & Function, 221(5), 2569–2587.CrossRefGoogle Scholar
  39. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO: a retrospective. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 58(1), 267–288.Google Scholar
  40. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused LASSO. Journal of the Royal Statistical Society. Series B, Methodological, 67(1), 91–108.CrossRefGoogle Scholar
  41. Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.Google Scholar
  42. Wang, Z., Zhu, X., Adeli, E., et al. (2017). Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Medical Image Analysis, 39, 218–230.CrossRefPubMedGoogle Scholar
  43. Yan, J., Li, T., Wang, H., et al. (2015). Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiology of Aging, 36(1), S185–S193.CrossRefPubMedGoogle Scholar
  44. Yau, W. Y. W., Tudorascu, D. L., McDade, E. M., Ikonomovic, S., James, J. A., Minhas, D., et al. (2015). Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurology, 14(8), 804–813.CrossRefPubMedGoogle Scholar
  45. Yin, S., Wen, Z., Shi, J., Peng, Y., Peng, J., et al. (2017). Manifold preserving: an intrinsic approach for semisupervised distance metric learning. IEEE Transactions on Neural Networks and Learning Systems, (99), 1–12.Google Scholar
  46. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.CrossRefPubMedGoogle Scholar
  47. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 55(3), 856–867.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage, 59(2), 895–907.CrossRefPubMedGoogle Scholar
  49. Zhang, D., Liu, J., & Shen, D.(2012b). Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis. MICCAI (pp. 264–271).Google Scholar
  50. Zhang, L., Wang, L., & Lin, W. (2012c). Conjunctive patches subspace learning with side information for collaborative image retrieval. IEEE Transactions on Image Processing, 21(8), 3707–3720.CrossRefPubMedGoogle Scholar
  51. Zhu, X., Huang, Z., Shen, H. T., Cheng, J., & Xu, C. (2012). Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition, 45(8), 3003–3016.CrossRefGoogle Scholar
  52. Zhu, X., Suk, H. I., Wang, L., Lee, S. W., & Shen, D. (2015). A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Medical Image Analysis, 75(6), 570–577.Google Scholar
  53. Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2016a). Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Transactions on Biomedical Engineering, 63(3), 607–618.CrossRefPubMedGoogle Scholar
  54. Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2016b). Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging and Behavior, 10(3), 818–828.CrossRefPubMedCentralPubMedGoogle Scholar
  55. Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2017). Discriminative self-representation sparse regression for neuroimaging-based Alzheimer’s disease diagnosis. Brain Imaging and Behavior.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen UniversityShenzhenChina
  2. 2.Shenzhen Key Lab of Advanced Telecommunication and Information Processing, College of Information EngineeringShenzhen UniversityShenzhenChina
  3. 3.Faculty of Science, Engineering & TechnologySwinburne University of TechnologyMelbourneAustralia

Personalised recommendations