Advertisement

The important role of dACC in shyness

  • Yu Mao
  • Jie Meng
  • Cody Ding
  • Dongtao Wei
  • Jinfu Zhang
  • Jiang QiuEmail author
ORIGINAL RESEARCH
  • 107 Downloads

Abstract

Shyness is often characterized by the avoidance of social contact, the fear of other people’s evaluations and a lack of self-esteem. Generally, individuals with high levels of shyness are more likely to suffer from psychosomatic stress and social anxiety. However, the structural brain basis of individual shyness among healthy people has not yet been investigated with DTI (diffusion tensor imaging). Thus, in this study, we investigated the relationship between FA (fractional anisotropy), WMV (white matter volume), GMV (gray matter volume) and shyness in a large healthy sample of 318 college students. Multiple regression was used to analyze the correlations among regional FA, WMV, GMV and shyness, adjusting for age, sex, and total intracranial volume. The results showed that shyness was significantly, negatively associated with FA, WMV and GMV in a cluster that included the dACC (dorsal anterior cingulate cortex) and the MCC (middle cingulate cortex) and was significantly positively associated with the GMV in the IPL (inferior parietal lobule), an effect that may have been related to the weaker ability to regulate emotion in these participants and their state of being overly worried about others’ evaluations. Finally, mediation analyses revealed that the correlation between shyness and psychosomatic stress was mediated by a region including the dACC and the MCC.

Keywords

Shyness Diffusion tensor imaging Dorsal anterior cingulate cortex Inferior parietal lobule 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31470981; 31571137; 31500885; 31600878; 31771231), Project of the National Defense Science and Technology Innovation Special Zone, Chang Jiang Scholars Program, National Outstanding Young People Plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1609177), Natural Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation (151023), the Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University.

Compliance with ethical standards

This study was approved by the local ethics committee of Southwest China University and the Institutional Human Participants Review Board of the Southwest University Imaging Center for Brain Research. The methods were conducted in accordance with the approved guidelines. All participants provided written informed consent prior to taking part in the study.

Conflict of interest

All authors declare that they have no conflict of interest.

Animal studies and human participants

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adamec, R. (1997). Transmitter systems involved in neural plasticity undelying increased anxiety and defense—implications for understanding anxiety following traumatic stress. Neuroscience & Biobehavioral Reviews, 21(6), 755–765.CrossRefGoogle Scholar
  2. Asami, T., Yamasue, H., Hayano, F., Nakamura, M., Uehara, K., Otsuka, T., Roppongi, T., Nihashi, N., Inoue, T., & Hirayasu, Y. (2009). Sexually dimorphic gray matter volume reduction in patients with panic disorder. Psychiatry Research: Neuroimaging, 173(2), 128–134.PubMedCrossRefGoogle Scholar
  3. Basser, P. J. (1994). Focal magnetic stimulation of an axon. IEEE Transactions on Biomedical Engineering, 41(6), 601–606.PubMedCrossRefGoogle Scholar
  4. Battaglia, M., Ogliari, A., Zanoni, A., Citterio, A., Pozzoli, U., Giorda, R., Maffei, C., & Marino, C. (2005). Influence of the serotonin transporter promoter gene and shyness on children’s cerebral responses to facial expressions. Archives of General Psychiatry, 62(1), 85–94.PubMedCrossRefGoogle Scholar
  5. Beaton, E. A., Schmidt, L. A., Schulkin, J., Antony, M. M., Swinson, R. P., & Hall, G. B. (2008). Different neural responses to stranger and personally familiar faces in shy and bold adults. Behavioral Neuroscience, 122(3), 704–709.PubMedCrossRefGoogle Scholar
  6. Beaton, E. A., Schmidt, L. A., Schulkin, J., Antony, M. M., Swinson, R. P., & Hall, G. B. (2009). Different fusiform activity to stranger and personally familiar faces in shy and social adults. Social Neuroscience, 4(4), 308–316.PubMedCrossRefGoogle Scholar
  7. Beaton, E. A., Schmidt, L. A., Schulkin, J., & Hall, G. B. (2010). Neural correlates of implicit processing of facial emotions in shy adults. Personality and Individual Differences, 49(7), 755–761.CrossRefGoogle Scholar
  8. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system–a technical review. NMR in Biomedicine, 15(7–8), 435–455.PubMedCrossRefGoogle Scholar
  9. Beidel, D. C., & Turner, S. M. (2007). Shy children, phobic adults: Nature and treatment of social anxiety disorder. DC: American Psychological Association Washington.CrossRefGoogle Scholar
  10. Botteron, K. N., Raichle, M. E., Drevets, W. C., Heath, A. C., & Todd, R. D. (2002). Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biological Psychiatry, 51(4), 342–344.PubMedCrossRefGoogle Scholar
  11. Brühl, A. B., Hänggi, J., Baur, V., Rufer, M., Delsignore, A., Weidt, S., Jäncke, L., & Herwig, U. (2014). Increased cortical thickness in a frontoparietal network in social anxiety disorder. Human Brain Mapping, 35(7), 2966–2977.PubMedCrossRefGoogle Scholar
  12. Buss, S. R. (1986). Bounded arithmetic (Vol. 86). Bibliopolis Napoli.Google Scholar
  13. Chak, K., & Leung, L. (2004). Shyness and locus of control as predictors of internet addiction and internet use. Cyberpsychology & Behavior, 7(5), 559–570.CrossRefGoogle Scholar
  14. Cheek, J. M., & Buss, A. H. (1981). Shyness and sociability. Journal of Personality and Social Psychology, 41(2), 330–339.CrossRefGoogle Scholar
  15. Cheek, J. M., & Melchior, L. A. (1990). Shyness, self-esteem, and self-consciousness Handbook of social and evaluation anxiety (pp. 47-82). Springer.Google Scholar
  16. Chen, S.-H., et al. (2002). Trauma and psychosocial aftermath among high-and low-exposure adults three months post the 921 Chi-Chi earthquake in Taiwan. Chinese Journal of Psychology, 44(2), 167–188.Google Scholar
  17. Cohen, R. A., Grieve, S., Hoth, K. F., Paul, R. H., Sweet, L., Tate, D., Gunstad, J., Stroud, L., McCaffery, J., Hitsman, B., Niaura, R., Clark, C. R., MacFarlane, A., Bryant, R., Gordon, E., & Williams, L. M. (2006). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry, 59(10), 975–982.PubMedCrossRefGoogle Scholar
  18. Comfort, S., & Phobia, S. (nd). Social anxiety/shyness.Google Scholar
  19. Conturo, T. E., McKinstry, R. C., Akbudak, E., & Robinson, B. H. (1996). Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magnetic Resonance in Medicine, 35(3), 399–412.PubMedCrossRefGoogle Scholar
  20. Costa, P. T., & MacCrae, R. R. (1992a). NEO PI-R: Professional Kit: Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI). Odessa: Psychological Assessment Resources.Google Scholar
  21. Costa Jr, P., & MacCrae, R. (1992b). Manual for the Revised NEO Personality Inventory (NEO-PIR) and the NEO Five-Factor Inventory (NEO-FFI). Odessa, FL: Psychological Assessment Resources: Inc.Google Scholar
  22. Cui, Z., Zhong, S., Xu, P., Gong, G., & He, Y. (2013). PANDA: a pipeline toolbox for analyzing brain diffusion images. Frontiers in human neuroscience, 7, 42.Google Scholar
  23. Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11(2), 157–163.PubMedCrossRefGoogle Scholar
  24. Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3(1), 11–21.PubMedCrossRefGoogle Scholar
  25. Davidson, R. J., Abercrombie, H., Nitschke, J. B., & Putnam, K. (1999). Regional brain function, emotion and disorders of emotion. Current Opinion in Neurobiology, 9(2), 228–234.PubMedCrossRefGoogle Scholar
  26. Dennissen, J. J., Asendorpf, J. B., & van Aken, M. (2008). Childhood personality predicts long-term trajectories of shyness and aggressiveness in the context of demographic transitions in emerging adulthood. Journal of Personality, 76(1), 67–100.PubMedCrossRefGoogle Scholar
  27. Domesick, V. B. (1970). The fasciculus cinguli in the rat. Brain Research, 20(1), 19–32.Google Scholar
  28. Drevets, W. C., Price, J. L., Simpson Jr, J. R., Todd, R. D., Reich, T., Vannier, M., & Raichle, M. E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627), 824.Google Scholar
  29. Ebeling-Witte, S., Frank, M. L., & Lester, D. (2007). Shyness, internet use, and personality. Cyberpsychology & Behavior, 10(5), 713–716.CrossRefGoogle Scholar
  30. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290–292.PubMedCrossRefGoogle Scholar
  31. Eisenberger, N. I., Taylor, S. E., Gable, S. L., Hilmert, C. J., & Lieberman, M. D. (2007). Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage, 35(4), 1601–1612.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6), 871–882.PubMedCrossRefGoogle Scholar
  33. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308(5722), 662–667.PubMedCrossRefGoogle Scholar
  34. Good, C.D., et al. (2002). A voxel-based morphometric study of ageing in 465 normal adult human brains. Biomedical Imaging, 2002. 5th IEEE EMBS International Summer School on, IEEE.Google Scholar
  35. Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport, 11(1), 43–48.PubMedCrossRefGoogle Scholar
  36. He, Q., Xue, G., Chen, C., Chen, C., Lu, Z. L., & Dong, Q. (2013). Decoding the neuroanatomical basis of reading ability: a multivoxel morphometric study. The Journal of Neuroscience, 33(31), 12835–12843.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Heiser, N. A., Turner, S. M., & Beidel, D. C. (2003). Shyness: relationship to social phobia and other psychiatric disorders. Behaviour Research and Therapy, 41(2), 209–221.PubMedCrossRefGoogle Scholar
  38. Henderson, L., & Zimbardo, F. (1998). Syness. Encyclopedia of mental health. San Diego: Academic Press.Google Scholar
  39. Henriksen, R. E., & Murberg, T. A. (2009). Shyness as a risk-factor for somatic complaints among Norwegian adolescents. School Psychology International, 30(2), 148–162.CrossRefGoogle Scholar
  40. Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1201–1213.PubMedCrossRefGoogle Scholar
  41. Hiscock, M., Inch, R., Jacek, C., Hiscock-kalil, C., & Kalil, K. M. (1994). Is there a sex difference in human laterality? I. An exhaustive survey of auditory laterality studies from six neuropsychology journals. Journal of Clinical and Experimental Neuropsychology, 16(3), 423–435.PubMedCrossRefGoogle Scholar
  42. Kircher, T. T., et al. (2000). Towards a functional neuroanatomy of self processing: effects of faces and words. Cognitive Brain Research, 10(1), 133–144.PubMedCrossRefGoogle Scholar
  43. Kochunov, P., Lancaster, J. L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., & Fox, P. (2001). Regional spatial normalization: toward an optimal target. Journal of Computer Assisted Tomography, 25(5), 805–816.PubMedCrossRefGoogle Scholar
  44. Kochunov, P., Williamson, D. E., Lancaster, J., Fox, P., Cornell, J., Blangero, J., & Glahn, D. C. (2012). Fractional anisotropy of water diffusion in cerebral white matter across the lifespan. Neurobiology of Aging, 33(1), 9–20.PubMedCrossRefGoogle Scholar
  45. Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4(2), 107–118.PubMedCrossRefGoogle Scholar
  46. Marcoulides, G., & Hershberger, S. (1997). Multivariate statistical analysis: A first course: Lawrence Erlbaum Associates, Mahwah, NJ.Google Scholar
  47. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.PubMedCrossRefGoogle Scholar
  48. Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemporary Educational Psychology, 25(3), 241–286.PubMedCrossRefGoogle Scholar
  49. Onoda, K., Okamoto, Y., Nakashima, K.’., Nittono, H., Yoshimura, S., Yamawaki, S., Yamaguchi, S., & Ura, M. (2010). Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism. Social Cognitive and Affective Neuroscience, 5(4), 385–391.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pessoa, L., Kastner, S., & Ungerleider, L. G. (2002). Attentional control of the processing of neutral and emotional stimuli. Cognitive Brain Research, 15(1), 31–45.PubMedCrossRefGoogle Scholar
  51. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.PubMedCrossRefGoogle Scholar
  52. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637–648.PubMedCrossRefGoogle Scholar
  53. Pilkonis, P. A. (1977). Shyness, public and private, and its relationship to other measures of social behavior1. Journal of Personality, 45(4), 585–595.CrossRefGoogle Scholar
  54. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Radua, J., Phillips, M. L., Russell, T., Lawrence, N., Marshall, N., Kalidindi, S., el-Hage, W., McDonald, C., Giampietro, V., Brammer, M. J., David, A. S., & Surguladze, S. A. (2010). Neural response to specific components of fearful faces in healthy and schizophrenic adults. Neuroimage, 49(1), 939–946.PubMedCrossRefGoogle Scholar
  56. Rämä, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H. J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage, 13(6), 1090–1101.PubMedCrossRefGoogle Scholar
  57. Ridgway, G. R., et al. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage, 44(1), 99–111.PubMedCrossRefGoogle Scholar
  58. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: adult amygdalar response to novelty. Science, 300(5627), 1952–1953.PubMedCrossRefGoogle Scholar
  59. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.PubMedCrossRefGoogle Scholar
  60. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83–98.Google Scholar
  61. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.PubMedCrossRefGoogle Scholar
  62. Tang, Y., Wang, F., Xie, G., Liu, J., Li, L., Su, L., Liu, Y., Hu, X., He, Z., & Blumberg, H. P. (2007). Reduced ventral anterior cingulate and amygdala volumes in medication-naive females with major depressive disorder: a voxel-based morphometric magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 156(1), 83–86.PubMedCrossRefGoogle Scholar
  63. Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage, 18(3), 650–659.PubMedCrossRefGoogle Scholar
  64. Uluǧ, A. M., et al. (1995). Correction of motional artifacts in diffusion-weighted images using a reference phase map. Magnetic Resonance in Medicine, 34(3), 476–480.PubMedCrossRefGoogle Scholar
  65. Wager, T. D., van Ast, V. A., Hughes, B. L., Davidson, M. L., Lindquist, M. A., & Ochsner, K. N. (2009). Brain mediators of cardiovascular responses to social threat, part II: prefrontal-subcortical pathways and relationship with anxiety. Neuroimage, 47(3), 836–851.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ward, C. C., & Tracey, T. J. (2004). Relation of shyness with aspects of online relationship involvement. Journal of Social and Personal Relationships, 21(5), 611–623.CrossRefGoogle Scholar
  67. Yang, X., Kendrick, K. M., Wu, Q., Chen, T., Lama, S., Cheng, B., Li, S., Huang, X., & Gong, Q. (2013). Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety. PLoS One, 8(5), e63151.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Yang, X., Wang, S., Kendrick, K. M., Wu, X., Yao, L., Lei, D., Kuang, W., Bi, F., Huang, X., He, Y., & Gong, Q. (2015). Sex differences in intrinsic brain functional connectivity underlying human shyness. Social Cognitive and Affective Neuroscience, 10(12), 1634–1643.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yu, H., Hu, J., Hu, L., & Zhou, X. (2013). The voice of conscience: neural bases of interpersonal guilt and compensation. Social Cognitive and Affective Neuroscience, 9(8), 1150–1158.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Yucel, K., MKinnon, M., Chahal, R., Taylor, V., Macdonald, K., Joffe, R., & MacQueen, G. (2009). Increased subgenual prefrontal cortex size in remitted patients with major depressive disorder. Psychiatry Research: Neuroimaging, 173(1), 71–76.PubMedCrossRefGoogle Scholar
  71. Zimmermann, L. K., & Stansbury, K. (2004). The influence of emotion regulation, level of shyness, and habituation on the neuroendocrine response of three-year-old children. Psychoneuroendocrinology, 29(8), 973–982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Mao
    • 1
    • 2
  • Jie Meng
    • 1
    • 2
  • Cody Ding
    • 1
    • 2
  • Dongtao Wei
    • 1
    • 2
  • Jinfu Zhang
    • 1
    • 2
  • Jiang Qiu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
  2. 2.Department of PsychologySouthwest UniversityChongqingChina

Personalised recommendations