Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography

Abstract

The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

CST:

corticospinal tract

HMFT(s):

hand-related motor fiber tract(s)

PT:

pyramidal tract

BA:

Brodmann area

dMRI:

diffusion magnetic resonance imaging

DTI:

diffusion tensor imaging

HARDI:

high angular resolution diffusion imaging

IC:

internal capsule

SCI:

spinal cord injury

TBI:

traumatic brain injury

MS:

multiple sclerosis

ALS:

amyotrophic lateral sclerosis

AF:

arcuate fascicle

SLF:

superior longitudinal fascicle

CC:

corpus callosum

HCP:

Human Connectome Project

UKF:

deterministic tractography - unscented Kalman filter deterministic tractography

FA:

fractional anisotropy

AD:

axial diffusivity

RD:

radial diffusivity

SD:

standard deviation

WU-Minn HCP consortium:

Washington University-University of Minnesota and Oxford University Human Connectome Project consortium

ROIs:

regions of interest

WMQL:

White Matter Query Language

AC:

anterior commissure

SI:

Symmetry index

WashU:

Washington University

MNI:

Montreal Neurological Institute

CBPS:

congenital bilateral perisylvian syndrome

OFF:

occipitofrontal fascicle

References

  1. Aertker, B. M., Bedi, S., & Cox Jr., C. S. (2016). Strategies for CNS repair following TBI. Experimental Neurology, 275(3), 411–426. https://doi.org/10.1016/j.expneurol.2015.01.008.

    Article  PubMed  Google Scholar 

  2. Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., & Parker, D. L. (2001). Analysis of partial volume effects in diffusion-tensor MRI. Magnetic Resonance in Medicine, 45(5), 770–780.

    CAS  PubMed  Article  Google Scholar 

  3. Alshikho, M. J., Zürcher, N. R., Loggia, M. L., Cernasov, P., Chonde, D. B., Izquierdo Garcia, D., et al. (2016). Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology, 87(24), 2554–2561. https://doi.org/10.1212/WNL.0000000000003427.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Barnard, J. W., & Woolsey, C. N. (1956). A study of localization in the corticospinal tracts of monkey and rat. Journal of Comparative Neurology, 105(1), 25–50.

    CAS  PubMed  Article  Google Scholar 

  5. Basser, P. J. (2004). Scaling laws for myelinated axons derived from an electrotonic core-conductor model. Journal of Integrative Neuroscience, 3(2), 227–244.

    PubMed  Article  Google Scholar 

  6. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Baumgartner, C. F., Michailovich, O., Levitt, J., Pasternak, O., Bouix, S., Westin, C. F., & Rathi, Y. (2012). A unified tractography framework for comparing diffusion models on clinical scans. Presented at the CDMRI workshop-MICCAI '12, Nice, France.

  8. Berman, J. I., Berger, M. S., Mukherjee, P., & Henry, R. G. (2004). Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. Journal of Neurosurgery, 101(1), 66–72. https://doi.org/10.3171/jns.2004.101.1.0066.

    Article  PubMed  Google Scholar 

  9. Berman, J. I., Berger, M. S., Chung, S., Nagarajan, S. S., & Henry, R. G. (2007). Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. Journal of Neurosurgery, 107(3), 488–494. https://doi.org/10.3171/JNS-07/09/0488.

    Article  PubMed  Google Scholar 

  10. Berman, J. I., Lanza, M. R., Blaskey, L., Edgar, J. C., & Roberts, T. P. L. (2013). High angular resolution diffusion imaging (HARDI) probabilistic tractography of the auditory radiation. American Journal of Neuroradiology, 34(8), 1573–1578. https://doi.org/10.3174/ajnr.A3471.

    CAS  Article  PubMed  Google Scholar 

  11. Bernal, B., Rey, G., Dunoyer, C., Shanbhag, H., & Altman, N. (2010). Agenesis of the arcuate fasciculi in congenital bilateral perisylvian syndrome: A diffusion tensor imaging and tractography study. Archives of Neurology, 67(4), 501–505. https://doi.org/10.1001/archneurol.2010.59.

    Article  PubMed  Google Scholar 

  12. Bertrand, G., Blundell, J., & Musella, R. (1965). Electrical exploration of the internal capsule and neighbouring structures during stereotaxic procedures. Journal of Neurosurgery, 22(4), 333–343.

    CAS  PubMed  Article  Google Scholar 

  13. Betz, W. (1874). Anatomischer Nachweis zweier Gehirncentra. Zentralblatt für die medizinischen Wissenschaften, 12, 578–580; 595–599.

  14. Bouchard, C. (1866). Secondary degenerations of the spinal cord. Translated into English by E.R. Hun (Utica, NY 1869). Cited by A. M. Lassek, The pyramidal tract (Springfield, IL: Thomas 1954).

  15. Bucci, M., Mandelli, M. L., Berman, J. I., Amirbekian, B., Nguyen, C., Berger, M. S., & Henry, R. G. (2013). Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. NeuroImage: Clinical, 3, 361–368. https://doi.org/10.1016/j.nicl.2013.08.008.

    Article  Google Scholar 

  16. Caiazzo, G., Fratello, M., Di Nardo, F., Trojsi, F., Tedeschi, G., & Esposito, F. (2018). Structural connectome with high angular resolution diffusion imaging MRI: Assessing the impact of diffusion weighting and sampling on graph-theoretic measures. Neuroradiology, 60(5), 497–504. https://doi.org/10.1007/s00234-018-2003-7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Campbell, A. W. (1905). Histological studies on the localization of cerebral function. Cambridge: Cambridge University Press.

    Google Scholar 

  18. Carlson, H. L., Laliberté, C., Brooks, B. L., Hodge, J., Kirton, A., Bello-Espinosa, L., et al. (2014). Reliability and variability of diffusion tensor imaging (DTI) tractography in pediatric epilepsy. Epilepsy & Behavior, 37, 116–122. https://doi.org/10.1016/j.yebeh.2014.06.020.

    Article  Google Scholar 

  19. Catani, M. (2007). From hodology to function. Brain, 130(3), 602–605. https://doi.org/10.1093/brain/awm008.

    Article  PubMed  Google Scholar 

  20. Chen, Z., Tie, Y., Olubiyi, O., Zhang, F., Mehrtash, A., Rigolo, L., et al. (2016). Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. International Journal of Computer Assisted Radiology and Surgery, 11(8), 1475–1486. https://doi.org/10.1007/s11548-015-1344-5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chronister, R. B., & Hardy, S. G. P. (1997). The limbic system. In D. E. Haines (Ed.), Fundamental neuroscience (pp. 443–454). London: Churchill Livingstone.

    Google Scholar 

  22. Clark, C. A., Barrick, T. R., Murphy, M. M., & Bell, B. A. (2003). White matter fiber tracking in patients with space-occupying lesions of the brain: A new technique for neurosurgical planning? NeuroImage, 20(3), 1601–1608. https://doi.org/10.1016/j.neuroimage.2003.07.022.

    Article  PubMed  Google Scholar 

  23. Clarke, E., & O’Malley, C. D. (1996). The human brain and spinal cord: A historical study illustrated by writings from antiquity to the twentieth century (2nd ed.). San Francisco: Norman Publishing.

    Google Scholar 

  24. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555.

    Article  Google Scholar 

  25. Cruveilhier, J. (1853). Sur la paralysie musculaire progressive atrophique. Archives Générales de Médecine, 1, 561–603.

    Google Scholar 

  26. Davidoff, R. A. (1990). The pyramidal tract. Neurology, 40(2), 332–332.

    CAS  PubMed  Article  Google Scholar 

  27. Dejerine, J. J., & Dejerine-Klumpke, A. (1895). Anatomie des centres nerveux (Vol. 1). Paris: Rueff et Cie.

  28. Dini, L., Vedolin, L., Bertholdo, D., Grando, R., Mazzola, A., Dini, S., et al. (2013). Reproducibility of quantitative fiber tracking measurements in diffusion tensor imaging of frontal lobe tracts: A protocol based on the fiber dissection technique. Surgical Neurology International, 4(1), 51. https://doi.org/10.4103/2152-7806.110508.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ellis, C. M., Suckling, J., Amaro Jr., E., Bullmore, E. T., Simmons, A., Williams, S. C. R., & Leigh, P. N. (2001). Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology, 57(9), 1571–1578.

    CAS  PubMed  Article  Google Scholar 

  30. Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G. D., & Connelly, A. (2013). White matter fiber tractography: Why we need to move beyond DTI. Journal of Neurosurgery, 118(6), 1367–1377. https://doi.org/10.3171/2013.2.JNS121294.

    Article  PubMed  Google Scholar 

  31. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., et al. (2012). 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feng, W., Wang, J., Chhatbar, P. Y., Doughty, C., Landsittel, D., Lioutas, V. A., et al. (2015). Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Annals of Neurology, 78(6), 860–870. https://doi.org/10.1002/ana.24510.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Filippi, M., Pagani, E., Preziosa, P., & Rocca, M. A. (2016). The role of DTI in multiple sclerosis and other demyelinating conditions. In W. V. Hecke, L. Emsell, & S. Sunaert (Eds.), Diffusion tensor imaging (pp. 331–341). New York: Springer. https://doi.org/10.1007/978-1-4939-3118-7_16.

    Google Scholar 

  34. Finger, S. (1994). Origins of neuroscience: A history of explorations into brain function. New York: Oxford University Press.

    Google Scholar 

  35. Flechsig, P. E. (1877). Pyramidal tract in brain and cord. Archiv für der Heilkunde, 18, 101–141.

    Google Scholar 

  36. Flechsig, P. E. (1904). Einige Bemerkungen über die Untersuchungsmethoden der Grosshirnrinde, insbesondere des Menschen. Berichie über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematik-Physik Klasse, 56, 50–104; 177–248.

  37. Ford, J. C., & Hackney, D. B. (1997). Numerical model for calculation of apparent diffusion coefficients (ADC) in permeable cylinders: Comparison with measured ADC in spinal cord white matter. Magnetic Resonance in Medicine, 37(3), 387–394. https://doi.org/10.1002/mrm.1910370315.

    CAS  Article  PubMed  Google Scholar 

  38. Galaburda, A. M., Corsiglia, J., Rosen, G. D., & Sherman, G. F. (1987). Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia, 25(6), 853–868. https://doi.org/10.1016/0028-3932(87)90091-1.

    Article  Google Scholar 

  39. Gall, F. J., & Spurzheim, J. C. (1810). Anatomie et physiologie du système nerveux en général, et du cerveau en particuler. Paris: Schoell et al.

    Google Scholar 

  40. Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gropman, A. L., Barkovich, A. J., Vezina, L. G., Conry, J. A., Dubovsky, E. C., & Packer, R. J. (1997). Pediatric congenital bilateral perisylvian syndrome: Clinical and MRI features in 12 patients. Neuropediatrics, 28(4), 198–203. https://doi.org/10.1055/s-2007-973700.

    CAS  Article  PubMed  Google Scholar 

  42. Hamidian, S., Vachha, B., Jenabi, M., Karimi, S., Young, R. J., Holodny, A. I., & Peck, K. K. (2018). Resting state fMRI and probabilistic DTI demonstrate that the greatest functional and structural connectivity in the hand motor homunculus occurs in the area of the thumb. Brain Connectivity8(6). https://doi.org/10.1089/brain.2018.0589

  43. Heiervang, E., Behrens, T. E. J., Mackay, C. E., Robson, M. D., & Johansen-Berg, H. (2006). Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage, 33(3), 867–877. https://doi.org/10.1016/j.neuroimage.2006.07.037.

    CAS  Article  PubMed  Google Scholar 

  44. Hille, B. (2001). Ion channels of excitable membranes (3rd ed.). Sunderland: Sinauer Associates Inc..

    Google Scholar 

  45. Hirayama, K., Tsubaki, T., Toyokura, Y., & Okinaka, S. (1962). The representation of the pyramidal tract in the internal capsule and basis pedunculi: A study based on three cases of amyotrophic lateral sclerosis. Neurology, 12, 337-342.

  46. Holmes, G., & May, W. P. (1909). On the exact origin of the pyramidal tracts in man and other mammals. Brain, 32(1), 1–43.

    Article  Google Scholar 

  47. Holodny, A. I., Gor, D. M., Watts, R., Gutin, P. H., & Ulug, A. M. (2005). Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: Initial anatomic results in contradistinction to prior reports. Radiology, 234(3), 649–653.

    PubMed  Article  Google Scholar 

  48. Huang, H., Zhang, J., Jiang, H., Wakana, S., Poetscher, L., Miller, M. I., et al. (2005). DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. NeuroImage, 26(1), 195–205. https://doi.org/10.1016/j.neuroimage.2005.01.019.

    Article  PubMed  Google Scholar 

  49. Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., & Pierpaoli, C. (2015). DR-BUDDI (diffeomorphic registration for blip-up blip-down diffusion imaging) method for correcting echo planar imaging distortions. NeuroImage, 106, 284–299. https://doi.org/10.1016/j.neuroimage.2014.11.042.

    Article  PubMed  Google Scholar 

  50. Itoh, D., Aoki, S., Maruyama, K., Masutani, Y., Mori, H., Masumoto, T., et al. (2006). Corticospinal tracts by diffusion tensor tractography in patients with arteriovenous malformations. Journal of Computer Assisted Tomography, 30(4), 618–623.

    PubMed  Article  Google Scholar 

  51. Jeong, J. W., Lee, J., Kamson, D. O., Chugani, H. T., & Juhász, C. (2015). Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction. Magnetic Resonance Imaging, 33(7), 895–902. https://doi.org/10.1016/j.mri.2015.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. NeuroImage, 73, 239–254. https://doi.org/10.1016/j.neuroimage.2012.06.081.

    Article  PubMed  Google Scholar 

  53. Kilinc, O., Ekinci, G., Demirkol, E., & Agan, K. (2015). Bilateral agenesis of arcuate fasciculus demonstrated by fiber tractography in congenital bilateral perisylvian syndrome. Brain & Development, 37(3), 352–355. https://doi.org/10.1016/j.braindev.2014.05.003.

    Article  Google Scholar 

  54. Kinoshita, M., Yamada, K., Hashimoto, N., Kato, A., Izumoto, S., Baba, T., et al. (2005). Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: Initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage, 25(2), 424–429. https://doi.org/10.1016/j.neuroimage.2004.07.076.

    Article  PubMed  Google Scholar 

  55. Kuo, H., Ferre, C. L., Carmel, J. B., Gowatsky, J. L., Stanford, A. D., Rowny, S. B., et al. (2017). Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Developmental Medicine and Child Neurology, 59(1), 65–71. https://doi.org/10.1111/dmcn.13192.

    Article  PubMed  Google Scholar 

  56. Kuypers, H. (1958). Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. Journal of Comparative Neurology, 110(2), 221–255.

    CAS  PubMed  Article  Google Scholar 

  57. Kuypers, H. G. (1964). The descending pathways to the spinal cord, their anatomy and function. Progress in Brain Research, 11, 178–202.

    CAS  PubMed  Article  Google Scholar 

  58. Lassek, A. M., & Rasmussen, G. L. (1939). The human pyramidal tract: A fiber and numerical analysis. Archives of Neurology and Psychiatry, 42(5), 872–876.

    Article  Google Scholar 

  59. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–407.

    PubMed  Article  Google Scholar 

  60. Le Gros Clark, W. E. (1959). The antecedents of man: An introduction to the evolution of the primates. Edinburgh: Edinburgh University Press.

    Google Scholar 

  61. Lee, D. H., Park, J. W., Park, S. H., & Hong, C. (2015). Have you ever seen the impact of crossing fiber in DTI?: Demonstration of the corticospinal tract pathway. PLoS One, 10(7), e0112045. https://doi.org/10.1371/journal.pone.0112045.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Lee, D. H., Lee, D. W., & Han, B. S. (2016). Symmetrical location characteristics of corticospinal tract associated with hand movement in the human brain. Medicine, 95(15), e3317. https://doi.org/10.1097/MD.0000000000003317.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Levin, P. M., & Beadford, F. K. (1938). The exact origin of the cortico-spinal tract in the monkey. Journal of Comparative Neurology, 68(4), 411–422.

    Article  Google Scholar 

  64. Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Snyder, A. Z., Guillory, R. K., & Conturo, T. E. (2002). Diffusion tensor fiber tracking of human brain connectivity: Acquisition methods, reliability analysis and biological results. NMR in Biomedicine, 15(7–8), 494–515.

    CAS  PubMed  Article  Google Scholar 

  65. Lu, P., Ahmad, R., & Tuszynski, M. H. (2016). Neural stem cells for spinal cord injury. In M. H. Tuszynski (Ed.), Translational neuroscience (pp. 297–315). New York: Springer. https://doi.org/10.1007/978-1-4899-7654-3_16.

    Google Scholar 

  66. Mai, J. K., & Paxinos, G. (2011). The human nervous system (3rd ed.). New York: Academic Press.

    Google Scholar 

  67. Makris, N., Worth, A. J., Papadimitriou, G. M., Stakes, J. W., Caviness, V. S., Kennedy, D. N., et al. (1997). Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6), 951–962.

    CAS  PubMed  Article  Google Scholar 

  68. Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness Jr., V. S. (1999). MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. NeuroImage, 9(1), 18–45. https://doi.org/10.1006/nimg.1998.0384.

    CAS  Article  PubMed  Google Scholar 

  69. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6), 854–869. https://doi.org/10.1093/cercor/bhh186.

    Article  PubMed  Google Scholar 

  70. Makris, N., Papadimitriou, G. M., Sorg, S., Kennedy, D. N., Caviness, V. S., & Pandya, D. N. (2007). The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study. NeuroImage, 37(4), 1100–1111. https://doi.org/10.1016/j.neuroimage.2007.05.042.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010). Filtered multitensor tractography. IEEE Transactions on Medical Imaging, 29(9), 1664–1675. https://doi.org/10.1109/TMI.2010.2048121.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mandelli, M. L., Berger, M. S., Bucci, M., Berman, J. I., Amirbekian, B., & Henry, R. G. (2014). Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. Journal of Neurosurgery, 121(2), 349–358. https://doi.org/10.3171/2014.4.JNS131160.

    Article  PubMed  Google Scholar 

  73. Manley, N. C., Azevedo-Pereira, R. L., Bliss, T. M., & Steinberg, G. K. (2015). Neural stem cells in stroke: Intracerebral approaches. In D. C. Hess (Ed.), Cell therapy for brain injury (pp. 91–109). New York: Springer. https://doi.org/10.1007/978-3-319-15063-5_7.

    Google Scholar 

  74. Mikuni, N., Okada, T., Enatsu, R., Miki, Y., Hanakawa, T., Urayama, S., et al. (2007). Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. Journal of Neurosurgery, 106(4), 593–598. https://doi.org/10.3171/jns.2007.106.4.593.

    Article  PubMed  Google Scholar 

  75. Mistichelli, D. (1709). Trattado dell’Apoplessia. Rome: A. de Rossi alla Piazza di Ceri.

  76. Mori, S., Crain, B. J., Chacko, V. P., & Van Zijl, P. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.

    CAS  PubMed  Article  Google Scholar 

  77. Mormina, E., Longo, M., Arrigo, A., Alafaci, C., Tomasello, F., Calamuneri, A., et al. (2015). MRI tractography of corticospinal tract and arcuate fasciculus in high-grade gliomas performed by constrained spherical deconvolution: Qualitative and quantitative analysis. American Journal of Neuroradiology, 36(10), 1853–1858. https://doi.org/10.3174/ajnr.A4368.

    CAS  Article  PubMed  Google Scholar 

  78. Nimsky, C., Bauer, M., & Carl, B. (2016). Merits and limits of tractography techniques for the uninitiated. In J. Schramm (Ed.), Advances and technical standards in neurosurgery (pp. 37–60). New York: Springer. https://doi.org/10.1007/978-3-319-21359-0_2.

    Google Scholar 

  79. Norton, I., Essayed, W. I., Zhang, F., Pujol, S., Yarmarkovich, A., Golby, A., et al. (2017). SlicerDMRI: Open source diffusion MRI software for brain Cancer research. Cancer Research, 77(21), e101–e103. https://doi.org/10.1158/0008-5472.CAN-17-0332.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Nyberg-Hansen, R., & Rinvik, E. (1963). Some comments on the pyramidal tract, with special reference to its individual variations in man. Acta Neurologica Scandinavica, 39(1), 1–30.

    Article  Google Scholar 

  81. O’Donnell, L. J., & Pasternak, O. (2015). Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophrenia Research, 161(1), 133–141. https://doi.org/10.1016/j.schres.2014.09.007.

    Article  PubMed  Google Scholar 

  82. O’Donnell, L. J., & Westin, C. F. (2011). An introduction to diffusion tensor image analysis. Neurosurgery Clinics of North America, 22(2), 185–196, viii. https://doi.org/10.1016/j.nec.2010.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Okada, T., Miki, Y., Kikuta, K., Mikuni, N., Urayama, S., Fushimi, Y., et al. (2007). Diffusion tensor fiber tractography for arteriovenous malformations: Quantitative analyses to evaluate the corticospinal tract and optic radiation. American Journal of Neuroradiology, 28(6), 1107–1113. https://doi.org/10.3174/ajnr.A0493.

    CAS  Article  PubMed  Google Scholar 

  84. Parent, A. (1996). Carpenter’s human neuroanatomy (9th ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  85. Peele, T. L. (1942). Cytoarchitecture of individual parietal areas in the monkey (Macaca mulatta) and the distribution of the efferent fibers. Journal of Comparative Neurology, 77(3), 693–737.

    Article  Google Scholar 

  86. Pellegrino, R. G., Spencer, P. S., & Ritchie, J. M. (1984). Sodium channels in the axolemma of unmyelinated axons: A new estimate. Brain Research, 305(2), 357–360. https://doi.org/10.1016/0006-8993(84)90442-6.

    CAS  Article  PubMed  Google Scholar 

  87. Petersen, M. V., Lund, T. E., Sunde, N., Frandsen, J., Rosendal, F., Juul, N., & Østergaard, K. (2016). Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. Journal of Neurosurgery, 126(5), 1657–1668. https://doi.org/10.3171/2016.4.JNS1624.

    Article  PubMed  Google Scholar 

  88. Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y. S., Kassis, I., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73(3), 337–344. https://doi.org/10.1001/jamaneurol.2015.4321.

    Article  PubMed  Google Scholar 

  89. Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L., Virta, A., & Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6), 1174–1185.

    CAS  Article  PubMed  Google Scholar 

  90. Pitres, J. A. (1884). Recherches anatomo-cliniques sur les scléroses bilatérales de la moelle épinière consécutives à des lésions unilatérales du cerveau. Paris: G. Masson.

    Google Scholar 

  91. Pourfour du Petit, F. (1710). Theory of contralateral innervation: Trois lettres d’un médecin des hôpitaux du Roy. contient un nouveau système du cerveau, etc. Namur, Belgium: C. G. Albert.

  92. Pujol, S., Wells, W., Pierpaoli, C., Brun, C., Gee, J., Cheng, G., et al. (2015). The DTI challenge: Toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. Journal of Neuroimaging, 25(6), 875–882. https://doi.org/10.1111/jon.12283.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Qazi, A. A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Whalen, S., et al. (2009). Resolving crossings in the corticospinal tract by two-tensor streamline tractography: Method and clinical assessment using fMRI. NeuroImage, 47(Suppl. 2), T98–T106. https://doi.org/10.1016/j.neuroimage.2008.06.034.

    Article  PubMed  Google Scholar 

  94. Radmanesh, A., Zamani, A. A., Whalen, S., Tie, Y., Suarez, R. O., & Golby, A. J. (2015). Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Clinical Neurology and Neurosurgery, 129, 44–49. https://doi.org/10.1016/j.clineuro.2014.11.021.

    Article  PubMed  Google Scholar 

  95. Ropper, A. H., Samuels, M. A., & Klein, J. (2014). Adams and Victor’s principles of neurology (10th ed.). New York: McGraw-Hill Education.

    Google Scholar 

  96. Russell, J. R., & DeMyer, W. (1961). The quantitative cortical origin of pyramidal axons of Macaca rhesus with some remarks on the slow rate of axolysis. Neurology, 11(2), 96–96.

    CAS  PubMed  Article  Google Scholar 

  97. Saporta, A. S. D., Kumar, A., Govindan, R. M., Sundaram, S. K., & Chugani, H. T. (2011). Arcuate fasciculus and speech in congenital bilateral perisylvian syndrome. Pediatric Neurology, 44(4), 270–274. https://doi.org/10.1016/j.pediatrneurol.2010.11.006.

    Article  PubMed  Google Scholar 

  98. Schäfer, E. A. (1883). Report on the lesions, primary and secondary, in the brain and spinal cord of the macacque monkey, exhibited by professors Ferrier and yeo. Journal of Physiology, 4(4–5), 316–326.

    PubMed  Article  Google Scholar 

  99. Schäfer, E. A. (1910). Experiments on the paths taken by volitional impulses passing from the cerebral cortex to the cord: The pyramids and the ventro-laterla descending tracts. Quarterly Journal of Experimental Physiology, 3(4), 355–373.

    Article  Google Scholar 

  100. Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford Univeristy Press.

    Google Scholar 

  101. Sherbondy, A. J., Dougherty, R. F., Napel, S., & Wandell, B. A. (2008). Identifying the human optic radiation using diffusion imaging and fiber tractography. Journal of Vision, 8(10), 12.1–12.1211. https://doi.org/10.1167/8.10.12.

  102. Skirven, T. M., Osterman, A. L., Fedorczyk, J., & Amadio, P. C. (2011). Rehabilitation of the hand and upper extremity (6th ed.). Philadelphia: Elsevier Mosley.

    Google Scholar 

  103. Snow, N. J., Peters, S., Borich, M. R., Shirzad, N., Auriat, A. M., Hayward, K. S., & Boyd, L. A. (2016). A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke. Journal of Neuroscience Methods, 257, 109–120. https://doi.org/10.1016/j.jneumeth.2015.09.025.

    Article  PubMed  Google Scholar 

  104. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.

    PubMed  Article  Google Scholar 

  105. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.

    PubMed  Article  Google Scholar 

  106. Stieltjes, B., Kaufmann, W. E., van Zijl, P. C., Fredericksen, K., Pearlson, G. D., Solaiyappan, M., & Mori, S. (2001). Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage, 14(3), 723–735. https://doi.org/10.1006/nimg.2001.0861.

    CAS  Article  PubMed  Google Scholar 

  107. Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4), 577–582.

    PubMed  Article  Google Scholar 

  108. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Pearson.

    Google Scholar 

  109. Türck, L. (1851). Über den Zustand der Sensibilität nach teilweiser Trennung des Rückenmarks. Zeitschrift für die Gesellschaft der Aerzte zu Wien, 189.

  110. Türck L. Über secundäre Erkrankung einzelner Rückenmarkstränge und ihrer Fortsetzung zum Gehirne. Akad Wissensch Wien Math Naturwiss Class Sitzungber 1852;8:511–534.

  111. Uğurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A., Duarte-Carvajalino, J. M., et al. (2013). Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. NeuroImage, 80, 80–104. https://doi.org/10.1016/j.neuroimage.2013.05.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. van der Graaff, M. M., Sage, C. A., Caan, M. W. A., Akkerman, E. M., Lavini, C., Majoie, C. B., et al. (2011). Upper and extra-motoneuron involvement in early motoneuron disease: A diffusion tensor imaging study. Brain, 134(4), 1211–1228. https://doi.org/10.1093/brain/awr016.

    Article  PubMed  Google Scholar 

  113. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2013). On describing human white matter anatomy: The white matter query language. Medical Image Computing and Computer Assisted Intervention, 16(Part 1), 647–654.

  114. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2016). The white matter query language: A novel approach for describing human white matter anatomy. Brain Structure and Function, 221(9), 4705–4721. https://doi.org/10.1007/s00429-015-1179-4.

    Article  PubMed  Google Scholar 

  115. Weiss, C., Tursunova, I., Neuschmelting, V., Lockau, H., Nettekoven, C., Oros-Peusquens, A. M., et al. (2015). Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NeuroImage: Clinical, 7, 424–437. https://doi.org/10.1016/j.nicl.2015.01.006.

    Article  Google Scholar 

  116. Willis, T. (1664). Cerebri anatome: Cui accessit nervorum descriptio et usus. London: J. Martyn and J. Allestry. Tercentenary ed., 1664–1964, Thomas Willis: The anatomy of the brain and nerves. Montreal: McGill University Press, 1965.

  117. Yagishita, A., Nakano, I., Oda, M., & Hirano, A. (1994). Location of the corticospinal tract in the internal capsule at MR imaging. Radiology, 191(2), 455–460.

    CAS  PubMed  Article  Google Scholar 

  118. Yamada, K., Kizu, O., Ito, H., Kubota, T., Akada, W., Goto, M., et al. (2005). Tractography for arteriovenous malformations near the sensorimotor cortices. American Journal of Neuroradiology, 26(3), 598–602.

    PubMed  Google Scholar 

  119. Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., & Winkler, P. (1997). Localization of the motor hand area to a knob on the precentral gyrus: A new landmark. Brain, 120(1), 141–157. https://doi.org/10.1093/brain/120.1.141.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for providing useful comments on the manuscript. We would also like to thank Prof. Myron Spector for fruitful discussions and for his support.

Funding

K.D. was partially supported by the Foundation for Education and European Culture (IPEP). M.T. was supported by the American Association of University Women (AAUW) and the Onassis Foundation. E.Y. was supported by Colby College Research Fund 01 2836. NIH P41 EB015902. P.S. was supported by a NARSAD Young Investigator Award, grant number 22591 from the Brain and Behavior Research Foundation. N.M. was supported by RO1AG042512 (National Institute of Aging & National Institute of Mental Health), RO1MH112748 (National Institute of Mental Health), RO1MH111917 (National Institute of Mental Health), R21AT008865 (National Center for Complementary and Integrative Health), R21DA042271 (National Institute of Drug Abuse), and K24MH116366 (National Institute of Mental Health).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikos Makris.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalamagkas, K., Tsintou, M., Rathi, Y. et al. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging and Behavior 14, 696–714 (2020). https://doi.org/10.1007/s11682-018-0006-y

Download citation

Keywords

  • Two-tensor tractography
  • Diffusion tensor imaging
  • Corticospinal tract
  • Neural repair
  • Quantification