Skip to main content

Multilevel diffusion tensor imaging classification technique for characterizing neurobehavioral disorders


This proposed novel method consists of three levels of analyses of diffusion tensor imaging data: 1) voxel level analysis of fractional anisotropy of white matter tracks, 2) connection level analysis, based on fiber tracks between specific brain regions, and 3) network level analysis, based connections among multiple brain regions. Machine-learning techniques of (Fisher score) feature selection, (Support Vector Machine) pattern classification, and (Leave-one-out) cross-validation are performed, for recognition of the neural connectivity patterns for diagnostic purposes. For validation proposes, this multilevel approach achieved an average classification accuracy of 90% between Alzheimer’s disease and healthy controls, 83% between Alzheimer’s disease and mild cognitive impairment, and 83% between mild cognitive impairment and healthy controls. The results indicate that the multilevel diffusion tensor imaging approach used in this analysis is a potential diagnostic tool for clinical evaluations of brain disorders. The presented pipeline is now available as a tool for scientifically applications in a broad range of studies from both clinical and behavioral spectrum, which includes studies about autism, dyslexia, schizophrenia, dementia, motor body performance, among others.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Ashburner, J., Barnes, G., Chen, C., et al. (2010). SPM 8 Manual. Accessed 09 September 2018.

  • Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B, 38(2), 163–168.

    Article  CAS  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111, 209–219.

    Article  CAS  Google Scholar 

  • Becker, B., & Drechsler, R. (1998). Binary decision diagrams: Theory and implementation. Springer. isbn:978-1-4419-5047-5.

  • Bihan, D. L., & Breton, E. (1985). Imagerie de diffusion in-vivo par résonance. Comptes rendus de l'Académie des Sciences., 301(15), 1109–1112.

    Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Barth.

    Google Scholar 

  • Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics. New York: Routledge.

    Google Scholar 

  • Demirhan, A., Nir, T. M., Zavaliangos-Petropulu, A. (2015). Feature selection improves the accuracy of classifying Alzheimer disease using diffusion tensor images. IEEE 12th International Symposium on Biomedical Imaging, New York.

  • Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., Meindl, T., Pievani, M., Bokde, A. L. W., Fellgiebel, A., Filippi, M., Hampel, H., Klöppel, S., Hauenstein, K., Kirste, T., Teipel, S. J., & the EDSD study group. (2013). Robust automated detection of classification of multicenter DTI data. PLoS One, 8(5), e64925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi, A., Dalboni da Rocha, J. L., Nagaraju, D. B., Tovar-Moll, F., Bramati, I., Coutinho, G., Sitaram, R., & Rashidi, P. (2017). Ensemble classification of Alzheimer's disease and mild cognitive impairment based on complex graph measures from diffusion tensor images. Frontiers in Neuroscience, 11, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Einstein, A. (1956). Investigations on the theory of Brownian motion. New York: Dover.

    Google Scholar 

  • Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 026107.

    Article  Google Scholar 

  • Foster, E. D., & Deardorff, A. (2017). Open science framework (OSF). Journal of the Medical Library Association, 105(2), 203–206.

    Article  Google Scholar 

  • Friston, K. J. (1996). Statistical parametric mapping and other analysis of functional imaging data. Brain Mapping: The Methods, pages 363–385. Academic Press.

  • Gong, G., He, Y., Concha, L., Lebel, C., Gross, D., Evans, A., & Beaulieu, C. (2008). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3, 1 March 2009), 524–536.

    Article  PubMed  Google Scholar 

  • Good, P. I. (2000). Permutation tests: A practical guide to resampling methods for testing hypotheses, springer series in statistics (Vol. 2). Springer.

  • He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in Neural Information Processing Systems, (pp. 507–514).

  • Hong, S., Bernhardt, B. C., Caldairou, B., Hall, J. A., Guiot, M. C., Schrader, D., Bernasconi, N., & Bernasconi, A. (2017). Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 88(8), 734–742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland, Massachusetts: Sinauer Associates Publishers.

    Google Scholar 

  • Jin, B., Strasburger, A., Laken, S. J., Kozel, F. A., Johnson, K. A., et al. (2009). Feature construction and selection for fMRI-based deception detection. BMC Bioinformatics, 10(Suppl 9), S15.

    Article  Google Scholar 

  • Johnson, R., & Freund, J. (2011). Miller and Freund’s probability and statistics for engineers (8th ed.) Prentice Hall International.

    Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physics Review, 87, 198701.

    CAS  Google Scholar 

  • Lawes, I. N., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., et al. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage, 39, 62–79.

    Article  Google Scholar 

  • Li, M., Qin, Y., Gao, F., Zhu, W., & He, X. (2014a). Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magnetic Resonance Imaging, 32, 1043–1051.

    Article  PubMed  Google Scholar 

  • Li, Q., Rajagopalan, C., & Clifford, G. D. (2014b). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435–447.

    Article  PubMed  Google Scholar 

  • Ojola, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11, 1833–1863.

    Google Scholar 

  • Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.

    Article  CAS  Google Scholar 

  • Radmacher, M. D., McShane, L. M., & Simon, R. (2002). A paradigm for class prediction using gene expression profiles. Journal of Computational Biology, 9, 505–512.

    Article  CAS  Google Scholar 

  • Rosen, K. H. (2006). Discrete mathematics and its applications. McGraw-Hill.

  • Sporns, O. (2003). Graph theory methods for the analysis of neural connectivity patterns. Neuroscience Databases, 171–186.

  • Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.

    Google Scholar 

  • Varkuti, B., Cavusoglu, M., Kullik, A., Schiffler, B., Veit, R., Yilmaz, O., et al. (2011). Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: An integrative MRI study. PLoS One, 6(4), e14801.

    Article  CAS  Google Scholar 

  • Yeh, F. C., & Tseng, W. Y. (2011). NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage, 58, 91–99.

    Article  Google Scholar 

  • Yeh, F. C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurita, M., Montalba, C., Labbé, T., Cruz, J. P., Dalboni da Rocha, J., Tejos, C., Ciampi, E., Cárcamo, C., Sitaram, R., et al. (2018). Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. NeuroImage Clinical, 20, 724–730. Advance online publication.

Download references


The senior author of this study was supported by the Indigo Project FKZ 01DQ13004, and Fondecyt Regular projects number 1171313 and number 1171320.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ranganatha Sitaram.

Ethics declarations

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalboni da Rocha, J.L., Coutinho, G., Bramati, I. et al. Multilevel diffusion tensor imaging classification technique for characterizing neurobehavioral disorders. Brain Imaging and Behavior 14, 641–652 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI: