Abstract
This proposed novel method consists of three levels of analyses of diffusion tensor imaging data: 1) voxel level analysis of fractional anisotropy of white matter tracks, 2) connection level analysis, based on fiber tracks between specific brain regions, and 3) network level analysis, based connections among multiple brain regions. Machine-learning techniques of (Fisher score) feature selection, (Support Vector Machine) pattern classification, and (Leave-one-out) cross-validation are performed, for recognition of the neural connectivity patterns for diagnostic purposes. For validation proposes, this multilevel approach achieved an average classification accuracy of 90% between Alzheimer’s disease and healthy controls, 83% between Alzheimer’s disease and mild cognitive impairment, and 83% between mild cognitive impairment and healthy controls. The results indicate that the multilevel diffusion tensor imaging approach used in this analysis is a potential diagnostic tool for clinical evaluations of brain disorders. The presented pipeline is now available as a tool for scientifically applications in a broad range of studies from both clinical and behavioral spectrum, which includes studies about autism, dyslexia, schizophrenia, dementia, motor body performance, among others.
This is a preview of subscription content, access via your institution.







References
Ashburner, J., Barnes, G., Chen, C., et al. (2010). SPM 8 Manual. https://lsa.umich.edu/psych/danielweissmanlab/downloads/spm8_manual.pdf. Accessed 09 September 2018.
Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B, 38(2), 163–168.
Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111, 209–219.
Becker, B., & Drechsler, R. (1998). Binary decision diagrams: Theory and implementation. Springer. isbn:978-1-4419-5047-5.
Bihan, D. L., & Breton, E. (1985). Imagerie de diffusion in-vivo par résonance. Comptes rendus de l'Académie des Sciences., 301(15), 1109–1112.
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Barth.
Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics. New York: Routledge.
Demirhan, A., Nir, T. M., Zavaliangos-Petropulu, A. (2015). Feature selection improves the accuracy of classifying Alzheimer disease using diffusion tensor images. IEEE 12th International Symposium on Biomedical Imaging, New York. https://doi.org/10.1109/ISBI.2015.7163832.
Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., Meindl, T., Pievani, M., Bokde, A. L. W., Fellgiebel, A., Filippi, M., Hampel, H., Klöppel, S., Hauenstein, K., Kirste, T., Teipel, S. J., & the EDSD study group. (2013). Robust automated detection of classification of multicenter DTI data. PLoS One, 8(5), e64925. https://doi.org/10.1371/journal.pone.0064925.
Ebadi, A., Dalboni da Rocha, J. L., Nagaraju, D. B., Tovar-Moll, F., Bramati, I., Coutinho, G., Sitaram, R., & Rashidi, P. (2017). Ensemble classification of Alzheimer's disease and mild cognitive impairment based on complex graph measures from diffusion tensor images. Frontiers in Neuroscience, 11, 56. https://doi.org/10.3389/fnins.2017.00056.
Einstein, A. (1956). Investigations on the theory of Brownian motion. New York: Dover.
Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 026107.
Foster, E. D., & Deardorff, A. (2017). Open science framework (OSF). Journal of the Medical Library Association, 105(2), 203–206. https://doi.org/10.5195/jmla.2017.88.
Friston, K. J. (1996). Statistical parametric mapping and other analysis of functional imaging data. Brain Mapping: The Methods, pages 363–385. Academic Press.
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D., Evans, A., & Beaulieu, C. (2008). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3, 1 March 2009), 524–536. https://doi.org/10.1093/cercor/bhn102.
Good, P. I. (2000). Permutation tests: A practical guide to resampling methods for testing hypotheses, springer series in statistics (Vol. 2). Springer.
He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in Neural Information Processing Systems, (pp. 507–514).
Hong, S., Bernhardt, B. C., Caldairou, B., Hall, J. A., Guiot, M. C., Schrader, D., Bernasconi, N., & Bernasconi, A. (2017). Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 88(8), 734–742. https://doi.org/10.1212/WNL.0000000000003632.
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland, Massachusetts: Sinauer Associates Publishers.
Jin, B., Strasburger, A., Laken, S. J., Kozel, F. A., Johnson, K. A., et al. (2009). Feature construction and selection for fMRI-based deception detection. BMC Bioinformatics, 10(Suppl 9), S15.
Johnson, R., & Freund, J. (2011). Miller and Freund’s probability and statistics for engineers (8th ed.) Prentice Hall International.
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physics Review, 87, 198701.
Lawes, I. N., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., et al. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage, 39, 62–79.
Li, M., Qin, Y., Gao, F., Zhu, W., & He, X. (2014a). Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magnetic Resonance Imaging, 32, 1043–1051. https://doi.org/10.1016/j.mri.2014.05.008.
Li, Q., Rajagopalan, C., & Clifford, G. D. (2014b). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435–447. https://doi.org/10.1016/j.cmpb.2014.09.002.
Ojola, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11, 1833–1863.
Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.
Radmacher, M. D., McShane, L. M., & Simon, R. (2002). A paradigm for class prediction using gene expression profiles. Journal of Computational Biology, 9, 505–512.
Rosen, K. H. (2006). Discrete mathematics and its applications. McGraw-Hill.
Sporns, O. (2003). Graph theory methods for the analysis of neural connectivity patterns. Neuroscience Databases, 171–186.
Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.
Varkuti, B., Cavusoglu, M., Kullik, A., Schiffler, B., Veit, R., Yilmaz, O., et al. (2011). Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: An integrative MRI study. PLoS One, 6(4), e14801.
Yeh, F. C., & Tseng, W. Y. (2011). NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage, 58, 91–99.
Yeh, F. C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713. https://doi.org/10.1371/journal.pone.0080713.
Zurita, M., Montalba, C., Labbé, T., Cruz, J. P., Dalboni da Rocha, J., Tejos, C., Ciampi, E., Cárcamo, C., Sitaram, R., et al. (2018). Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. NeuroImage Clinical, 20, 724–730. Advance online publication. https://doi.org/10.1016/j.nicl.2018.09.002.
Acknowledgements
The senior author of this study was supported by the Indigo Project FKZ 01DQ13004, and Fondecyt Regular projects number 1171313 and number 1171320.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dalboni da Rocha, J.L., Coutinho, G., Bramati, I. et al. Multilevel diffusion tensor imaging classification technique for characterizing neurobehavioral disorders. Brain Imaging and Behavior 14, 641–652 (2020). https://doi.org/10.1007/s11682-018-0002-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-018-0002-2