Abstract
Major depressive disorder is a common disease worldwide, which is characterized by significant and persistent depression. Non-invasive accessory diagnosis of depression can be performed by resting-state functional magnetic resonance imaging (rs-fMRI). However, the fMRI signal may not satisfy linearity and stationarity. The Hilbert-Huang transform (HHT) is an adaptive time–frequency localization analysis method suitable for nonlinear and non-stationary signals. The objective of this study was to apply the HHT to rs-fMRI to find the abnormal brain areas of patients with depression. A total of 35 patients with depression and 37 healthy controls were subjected to rs-fMRI. The HHT was performed to extract the Hilbert-weighted mean frequency of the rs-fMRI signals, and multivariate receiver operating characteristic analysis was applied to find the abnormal brain regions with high sensitivity and specificity. We observed differences in Hilbert-weighted mean frequency between the patients and healthy controls mainly in the right hippocampus, right parahippocampal gyrus, left amygdala, and left and right caudate nucleus. Subsequently, the above-mentioned regions were included in the results obtained from the compared region homogeneity and the fractional amplitude of low frequency fluctuation method. We found brain regions with differences in the Hilbert-weighted mean frequency, and examined their sensitivity and specificity, which suggested a potential neuroimaging biomarker to distinguish between patients with depression and healthy controls. We further clarified the pathophysiological abnormality of these regions for the population with major depressive disorder.






References
Anand, A., Li, Y., Wang, Y., Gardner, K., & Lowe, M. J. (2007). Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 274–282.
Anand, A., Li, Y., Wang, Y., Lowe, M. J., & Dzemidzic, M. (2009). Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Research: Neuroimaging, 171(3), 189–198.
Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., … & Lowe, M. J. (2005). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry, 57(10), 1079–1088.
Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., … & Lowe, M. J. (2005). Antidepressant effect on connectivity of the mood-regulating circuit: an FMRI study. Neuropsychopharmacology, 30(7), 1334.
Begg, C. B. (1991). Advances in statistical methodology for diagnostic medecine ni the 1980’s. Statistics in Medicine, 10(12), 1887–1895.
Bluhm, R., Williamson, P., Lanius, R., Théberge, J., Densmore, M., Bartha, R., … & Osuch, E. (2009). Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry and Clinical Neurosciences, 63(6), 754–761.
Bullmore, E., Fadili, J., Maxim, V., Şendur, L., Whitcher, B., Suckling, J., … & Breakspear, M. (2004). Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage, 23, S234-S249.
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.
Chen, J. D., Liu, F., Xun, G. L., Chen, H. F., Hu, M. R., Guo, X. F., … & Zhao, J. P. (2012). Early and late onset, first-episode, treatment-naive depression: same clinical symptoms, different regional neural activities. Journal of Affective Disorders, 143(1), 56–63.
Copas, J. B., & Corbett, P. (2002). Overestimation of the receiver operating characteristic curve for logistic regression. Biometrika, 89(2), 315–331.
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(1), 279–306.
Ding, H., Huang, Z., Song, Z., & Yan, Y. (2007). Hilbert–Huang transform based signal analysis for the characterization of gas–liquid two-phase flow. Flow Measurement and Instrumentation, 18(1), 37–46.
Donnelly, D. (2006). The fast Fourier and Hilbert-Huang transforms: a comparison. Computational Engineering in Systems Applications, IMACS Multiconference on (Vol. 1, pp. 84–88). IEEE.
Drevets, W. C., Bogers, W., & Raichle, M. E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology, 12(6), 527–544.
Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure and Function, 213(1–2), 93–118.
Dunn, R. T., Kimbrell, T. A., Ketter, T. A., Frye, M. A., Willis, M. W., Luckenbaugh, D. A., & Post, R. M. (2002). Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression. Biological Psychiatry, 51(5), 387–399.
El Khouli, R. H., Macura, K. J., Barker, P. B., Habba, M. R., Jacobs, M. A., & Bluemke, D. A. (2009). Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast. Journal of Magnetic Resonance Imaging, 30(5), 999–1004.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
Ferenci, P., Lockwood, A., Mullen, K., Tarter, R., Weissenborn, K., & Blei, A. T. (2002). Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology, 35(3), 716–721.
Finkelmeyer, A., Nilsson, J., He, J., Stevens, L., Maller, J. J., Moss, R. A., … & McAllister-Williams, R. H. (2016). Altered hippocampal function in major depression despite intact structure and resting perfusion. Psychological Medicine, 46(10), 2157–2168.
Furman, D. J., Hamilton, J. P., & Gotlib, I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biology of Mood & Anxiety Disorders, 1(1), 11.
Guo, W. B., Liu, F., Chen, J. D., Gao, K., Xue, Z. M., Xu, X. J., … & Chen, H. F. (2012). Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study. Journal of Psychiatric Research, 46(10), 1366–1373.
Guo, W. B., Sun, X. L., Liu, L., Xu, Q., Wu, R. R., Liu, Z. N., … & Zhao, J. P. (2011). Disrupted regional homogeneity in treatment-resistant depression: a resting-state fMRI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(5), 1297–1302.
Hamilton, J. P., Chen, M. C., & Gotlib, I. H. (2013). Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiology of Disease, 52, 4–11.
Hamilton, M. A. X. (1967). Development of a rating scale for primary depressive illness. British Journal of Clinical Psychology, 6(4), 278–296.
Hosmer, D. W., & Lemesbow, S. (1980). Goodness of fit tests for the multiple logistic regression model. Communications in Statistics-Theory and Methods, 9(10), 1043–1069.
Huang, H., & Pan, J. (2006). Speech pitch determination based on Hilbert-Huang transform. Signal Processing, 86(4), 792–803.
Huang, M., Wu, P., Liu, Y., Bi, L., & Chen, H. (2008). Application and contrast in brain-computer interface Between hilbert-huang transform and wavelet transform. In Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for (pp. 1706–1710). IEEE.
Huang, N. E. (2014). Hilbert-Huang transform and its applications (Vol. 16). World Scientific.
Huang, N. E., & Shen, S. S. P. (2005). Hilbert-Huang Transform and Its Applications. Singapore: World Scientific. https://doi.org/10.1142/5862.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. The Royal Society.
Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2).
Kempton, M. J., Salvador, Z., Munafò, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690.
Kenny, E. R., O’Brien, J. T., Cousins, D. A., Richardson, J., Thomas, A. J., Firbank, M. J., & Blamire, A. M. (2010). Functional connectivity in late-life depression using resting-state functional magnetic resonance imaging. The American Journal of Geriatric Psychiatry, 18(7), 643–651.
Kim, M. J., Hamilton, J. P., & Gotlib, I. H. (2008). Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Research: Neuroimaging, 164(2), 114–122.
Krishnan, K. R. R., McDonald, W. M., Escalona, P. R., Doraiswamy, P. M., Na, C., Husain, M. M., … & Nemeroff, C. B. (1992). Magnetic resonance imaging of the caudate nuclei in depression: preliminary observations. Archives of General Psychiatry, 49(7), 553–557.
Lange, N., & Zeger, S. L. (1997). Non-linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46(1), 1–29.
Lin, C. F., & Zhu, J. D. (2012). Hilbert–Huang transformation-based time-frequency analysis methods in biomedical signal applications. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(3), 208–216.
Liu, C. H., Ma, X., Wu, X., Fan, T. T., Zhang, Y., Zhou, F. C., … & Zhang, D. (2013). Resting-state brain activity in major depressive disorder patients and their siblings. Journal of Affective Disorders, 149(1), 299–306.
Liu, F., Guo, W., Liu, L., Long, Z., Ma, C., Xue, Z., … & Du, H. (2013). Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. Journal of Affective Disorders, 146(3), 401–406.
Liu, J., Ren, L., Womer, F. Y., Wang, J., Fan, G., Jiang, W., … & Wang, F. (2014). Alterations in amplitude of low frequency fluctuation in treatment-naïve major depressive disorder measured with resting-state fMRI. Human Brain Mapping, 35(10), 4979–4988.
Liu, Z., Xu, C., Xu, Y., Wang, Y., Zhao, B., Lv, Y., … & Du, C. (2010). Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Research: Neuroimaging, 182(3), 211–215.
Mah, L., Zarate, C. A., Singh, J., Duan, Y. F., Luckenbaugh, D. A., Manji, H. K., & Drevets, W. C. (2007). Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biological Psychiatry, 61(6), 765–775.
Malykhin, N. V., & Coupland, N. J. (2015). Hippocampal neuroplasticity in major depressive disorder. Neuroscience, 309, 200–213.
Martis, R. J., Acharya, U. R., Tan, J. H., Petznick, A., Yanti, R., Chua, C. K., … & Tong, L. (2012). Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. International Journal of Neural Systems, 22(06), 1250027.
McIntyre, R. S., Harrison, J., Loft, H., Jacobson, W., & Olsen, C. K. (2016). The effects of vortioxetine on cognitive function in patients with major depressive disorder: a meta-analysis of three randomized controlled trials. International Journal of Neuropsychopharmacology, 19(10).
Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T., & Assaf, Y. (2009). Cluster analysis of resting-state fMRI time series. Neuroimage, 45(4), 1117–1125.
Murray, E. A., Wise, S. P., & Drevets, W. C. (2011). Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biological Psychiatry, 69(12), e43–e54.
Obuchowski, N. A. (2003). Receiver operating characteristic curves and their use in radiology. Radiology, 229(1), 3–8.
Otte, C., Gold, S. M., Penninx, B. W., et al. (2016). Major Depressive Disorder. Nature Reviews Disease Primers, 2,(16065).
Peng, Z. K., Peter, W. T., & Chu, F. L. (2005). A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 19(5), 974–988.
Pepe, M. S., Cai, T., & Longton, G. (2006). Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics, 62(1), 221–229.
Pepe, M. S., & Thompson, M. L. (2000). Combining diagnostic test results to increase accuracy. Biostatistics, 1(2), 123–140.
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … & Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702–710.
Qian, L., Zhang, Y., Zheng, L., Fu, X., Liu, W., Shang, Y., … & Gao, J. H. (2017). Frequency specific brain networks in Parkinson’s disease and comorbid depression. Brain Imaging and Behavior, 11(1), 224–239.
Qian, L., Zhang, Y., Zheng, L., Shang, Y., Gao, J. H., & Liu, Y. (2015). Frequency dependent topological patterns of resting-state brain networks. PloS One, 10(4), e0124681.
Qiu, Y. W., Han, L. J., Lv, X. F., Jiang, G. H., Tian, J. Z., Zhuo, F. Z., … & Zhang, X. L. (2011). Regional homogeneity changes in heroin-dependent individuals: resting-state functional MR imaging study. Radiology, 261(2), 551–559.
Rigucci, S., Serafini, G., Pompili, M., Kotzalidis, G. D., & Tatarelli, R. (2010). Anatomical and functional correlates in major depressive disorder: the contribution of neuroimaging studies. The World Journal of Biological Psychiatry, 11(2–2), 165–180.
Robertson, H. P. (1929). The uncertainty principle. Physical Review, 34(1), 163.
Sheline, Y. I. (2000). 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biological Psychiatry, 48(8), 791–800.
Sheline, Y. I. (2003). Neuroimaging studies of mood disorder effects on the brain. Biological Psychiatry, 54(3), 338–352.
Sheline, Y. I. (2011). Depression and the hippocampus: cause or effect? Biological Psychiatry, 70(4), 308.
Skidmore, F., Korenkevych, D., Liu, Y., He, G., Bullmore, E., & Pardalos, P. M. (2011). Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neuroscience Letters, 499(1), 47–51.
Song, X., Zhang, Y., & Liu, Y. (2014). Frequency specificity of regional homogeneity in the resting-state human brain. PloS One, 9(1), e86818.
Song, X., Zhou, S., Zhang, Y., Liu, Y., Zhu, H., & Gao, J. H. (2015). Frequency-dependent modulation of regional synchrony in the human brain by eyes open and eyes closed resting-states. PloS One, 10(11), e0141507.
Surhone, L. M., Tennoe, M. T., Henssonow, S. F., & Cauchy, A. L. (2013). Cauchy Principal Value. Betascript Publishing.
Tahmasian, M., Knight, D. C., Manoliu, A., Schwerthöffer, D., Scherr, M., Meng, C., … & Drzezga, A. (2013). Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Frontiers in Human Neuroscience, 7.
Tononi, G., McIntosh, A. R., Russell, D. P., & Edelman, G. M. (1998). Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage, 7(2), 133–149.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.
Van De Ville, D., Blu, T., & Unser, M. (2006). Surfing the brain. IEEE Engineering in Medicine and Biology Magazine, 25(2), 65–78.
Van Someren, E. J. (2011). Slow brain oscillations of sleep, resting state and vigilance (Vol. 193). Elsevier.
Videbech, P. (2000). PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatrica Scandinavica, 101(1), 11–20.
Wu, Q. Z., Li, D. M., Kuang, W. H., Zhang, T. J., Lui, S., Huang, X. Q., … & Gong, Q. Y. (2011). Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Human Brain Mapping, 32(8), 1290–1299.
Xie, H., & Wang, Z. (2006). Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis. Computer Methods and Programs in Biomedicine, 82(2), 114–120.
Yang, H., Long, X. Y., Yang, Y., Yan, H., Zhu, C. Z., Zhou, X. P., … & Gong, Q. Y. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 36(1), 144–152.
Yao, Z., Wang, L., Lu, Q., Liu, H., & Teng, G. (2009). Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. Journal of Affective Disorders, 115(3), 430–438.
Young, C. B., Chen, T., Nusslock, R., Keller, J., Schatzberg, A. F., & Menon, V. (2016). Anhedonia and general distress show dissociable ventromedial prefrontal cortex connectivity in major depressive disorder. Translational Psychiatry, 6(5), e810.
Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., … & Yu-Feng, W. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91.
Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., … & Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 135(5), 1498–1507.
Zhou, Y., Yu, C., Zheng, H., Liu, Y., Song, M., Qin, W., … & Jiang, T. (2010). Increased neural resources recruitment in the intrinsic organization in major depression. Journal of Affective Disorders, 121(3), 220–230.
Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., … & Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.
Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561–577.
Acknowledgements
The authors gratefully acknowledge Beijing Normal University Imaging Center for Brain Research for the contributions in MRI data acquisition.
Funding
This work was supported by the Funds for the general Program of the National Natural Science Foundation of China (61571047, 81471389), Beijing Science and Technology Commission (D121100005012002), Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201403) and CAS Key Laboratory of Mental Health, Institute of Psychology (KLMH2015G06).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Rights and permissions
About this article
Cite this article
Yu, H., Li, F., Wu, T. et al. Functional brain abnormalities in major depressive disorder using the Hilbert-Huang transform. Brain Imaging and Behavior 12, 1556–1568 (2018). https://doi.org/10.1007/s11682-017-9816-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-017-9816-6