Abstract
In humans, food is considered a powerful primary reinforcer, whereas money is a secondary reinforcer, as it gains a value through learning experience. Here, we aimed to identify the neural regions supporting the processing of food-related reinforcers, relate it to the neural underpinnings of monetary reinforcers, and explore their modulation by metabolic state (hunger vs satiety). Twenty healthy male participants were tested in two experimental sessions, once hungry and once satiated, using functional magnetic resonance imaging. Participants performed an associative learning task, receiving food or monetary rewards (in the form of images) on separate blocks. Irrespective of incentive type, both food and monetary rewards engaged ventral striatum, medial orbitofrontal cortex and amygdala, regions that have been previously associated with reward processing. Food incentives additionally engaged the opercular part of the inferior frontal gyrus and the insula, collectively known as a primary gustatory cortex. Moreover, in response to negative feedback (here, reward omission), robust activation was observed in anterior insula, supplementary motor area and lateral parts of the prefrontal cortex, including middle and inferior frontal gyrus. Furthermore, the interaction between metabolic state and incentive type resulted in supramarginal gyrus (SMG) activity, among other motor and sensory-related regions. Finally, functional connectivity analysis showed correlation in the hungry state between the SMG and mesolimbic regions, including the hippocampus, midbrain and cingulate areas. Also, the interaction between metabolic state and incentive type revealed coupling between SMG and ventral striatum. Whereas general purpose reward-related regions process incentives of different kinds, the current results suggest that the SMG might play a key role in integrating the information related to current metabolic state and available incentive type.
Similar content being viewed by others
Abbreviations
- ANOVA:
-
Analysis of variance
- AROMA:
-
Automatic Removal of Motion Artifacts
- BMI:
-
Body mass index
- DARTEL:
-
Diffeomorphic anatomical registration through exponentiated lie algebra
- FWHM:
-
Full width half maximum
- GLM:
-
General linear model
- ICA:
-
Independent component analysis
- IFG:
-
Inferior frontal gyrus
- IPL:
-
Inferior parietal lobule
- OFC:
-
Orbitofrontal cortex
- PFC:
-
Prefrontal cortex
- SMA:
-
Supplemental motor area
- SMG:
-
Supramarginal gyrus
- VS:
-
Ventral striatum
- VTA:
-
Ventral tegmental area
References
Arana, F. S., Parkinson, J. A., Hinton, E., Holland, A. J., Owen, A. M., & Roberts, A. C. (2003). Dissociable Contributions of the Human Amygdala and Orbitofrontal Cortex to Incentive Motivation and Goal Selection. The Journal of Neuroscience, 23(29), 9632–9638.
Araujo, H. F., Kaplan, J., Damasio, H., & Damasio, A. (2015). Neural correlates of different self domains. Brain and Behavior, 5(12), e00409. https://doi.org/10.1002/brb3.409.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.
Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. [journal article]. Behavior Research Methods, 37(3), 379–384. https://doi.org/10.3758/bf03192707.
Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The Role of the Dorsal Striatum in Reward and Decision-Making. The Journal of Neuroscience, 27(31), 8161–8165. https://doi.org/10.1523/jneurosci.1554-07.2007.
Balthasar, N. (2006). Genetic Dissection of Neuronal Pathways Controlling Energy Homeostasis. Obesity, 14(S8), 222S-227S, https://doi.org/10.1038/oby.2006.313.
Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual Differences in Reward Drive Predict Neural Responses to Images of Food. The Journal of Neuroscience, 26(19), 5160–5166. https://doi.org/10.1523/jneurosci.0350-06.2006.
Benarroch, E. (2006). Basic Neurosciences with Clinical Applications / E.E. Benarroch.
Berg, B. v. d, Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Cognitive, Affective, & Behavioral Neuroscience - Springer, https://doi.org/10.3758/s1341.
Bermudez, M. A., Göbel, C., & Schultz, W. (2012). Sensitivity to Temporal Reward Structure in Amygdala Neurons. Current Biology, 22(19), 1839–1844. https://doi.org/10.1016/j.cub.2012.07.062.
Blechert, J., Klackl, J., Miedl, S. F., & Wilhelm, F. H. (2016). To eat or not to eat: Effects of food availability on reward system activity during food picture viewing. Appetite, 99, 254–261. https://doi.org/10.1016/j.appet.2016.01.006.
Block, M. L. (2011). Ventral Tegmental Area of Midbrain. In J. S. Kreutzer, J. DeLuca & B. Caplan (Eds.), Encyclopedia of Clinical Neuropsychology (pp. 2597–2598). New York, NY: Springer.
Brett, M., Anton, J., Valabregue, R., & J, P. (2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, NeuroImage, Vol 16, No 2.
Brody, A. L., Mandelkern, M. A., Lee, G., Smith, E., Sadeghi, M., Saxena, S., et al. (2004). Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry research, 130(3), 269–281. https://doi.org/10.1016/j.pscychresns.2003.12.006.
Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2008). Functional Connectivity of Reward Processing in the Brain. Frontiers in Human Neuroscience, 2, 19. https://doi.org/10.3389/neuro.09.019.2008.
Cauda, F., Cavanna, A. E., D’Agata, F., Sacco, K., Duca, S., & Geminiani, G. C. (2011). Functional Connectivity and Coactivation of the Nucleus Accumbens: A Combined Functional Connectivity and Structure-Based Meta-analysis. Journal of Cognitive Neuroscience, 23(10), 2864–2877. https://doi.org/10.1162/jocn.2011.21624.
Cho, Y. T., Ernst, M., & Fudge, J. L. (2013). Cortico–Amygdala–Striatal Circuits Are Organized as Hierarchical Subsystems through the Primate Amygdala. The Journal of Neuroscience, 33(35), 14017–14030. https://doi.org/10.1523/jneurosci.0170-13.2013.
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2002). Fear Conditioning in Humans: The Influence of Awareness and Autonomic Arousal on Functional Neuroanatomy. Neuron, 33(4), 653–663. https://doi.org/10.1016/S0896-6273(02)00588-3.
de Araujo, I. E. T., Kringelbach, M. L., Rolls, E. T., & Hobden, P. (2003). Representation of Umami Taste in the Human Brain. Journal of Neurophysiology, 90(1), 313–319. https://doi.org/10.1152/jn.00669.2002.
Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. [journal article]. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 27–38. https://doi.org/10.3758/cabn.3.1.27.
Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the Hemodynamic Responses to Reward and Punishment in the Striatum. Journal of Neurophysiology, 84(6), 3072–3077.
Dietrich, A., Hollmann, M., Mathar, D., Villringer, A., & Horstmann, A. (2016). Brain regulation of food craving: relationships with weight status and eating behavior. International Journal of Obesity. https://doi.org/10.1038/ijo.2016.28.
DiLeone, R. J. (2009). The influence of leptin on the dopamine system and implications for ingestive behavior. International Journal of Obesity, 33(S2), S25-S29. https://doi.org/10.1038/ijo.2009.68.
Draganski, B., Kherif, F., Kloppel, S., Cook, P. A., Alexander, D. C., Parker, G. J. M., Deichmann, R., Ashburner, J., & Frackowiak, R. S. J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28(28), 7143–7152. https://doi.org/10.1523/jneurosci.1486-08.2008.
Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. W. (2003). Differential Response Patterns in the Striatum and Orbitofrontal Cortex to Financial Reward in Humans: A Parametric Functional Magnetic Resonance Imaging Study. The Journal of Neuroscience, 23(1), 303–307.
Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined Effects of Attention and Motivation on Visual Task Performance: Transient and Sustained Motivational Effects. Frontiers in Human Neuroscience, 3, 4, https://doi.org/10.3389/neuro.09.004.2009.
Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668–674. https://doi.org/10.1037/1528-3542.7.3.668.
Erlanson-Albertsson, C. (2005). Appetite regulation and energy balance. Acta Paediatrica, 94, 40–41. https://doi.org/10.1111/j.1651-2227.2005.tb02128.x.
Friederich, H.-C., Wu, M., Simon, J. J., & Herzog, W. (2013). Neurocircuit function in eating disorders. International Journal of Eating Disorders, 46(5), 425–432. https://doi.org/10.1002/eat.22099.
Führer, D., Zysset, S., & Stumvoll, M. (2008). Brain Activity in Hunger and Satiety: An Exploratory Visually Stimulated fMRI Study. Obesity, 16(5), 945–950. https://doi.org/10.1038/oby.2008.33.
Fujiwara, J., Tobler, P. N., Taira, M., Iijima, T., & Tsutsui, K.-I. (2009). Segregated and Integrated Coding of Reward and Punishment in the Cingulate Cortex. Journal of Neurophysiology, 101(6), 3284–3293. https://doi.org/10.1152/jn.90909.2008.
Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2003). Encoding Predictive Reward Value in Human Amygdala and Orbitofrontal Cortex. Science, 301(5636), 1104–1107. https://doi.org/10.1126/science.1087919.
Göttlich, M., Beyer, F., & Krämer, U. M. (2015). BASCO: a toolbox for task-related functional connectivity. Frontiers in Systems Neuroscience, 9, 126. https://doi.org/10.3389/fnsys.2015.00126.
Grosbras, M.-H., & Paus, T. (2006). Brain Networks Involved in Viewing Angry Hands or Faces. Cerebral Cortex, 16(8), 1087–1096. https://doi.org/10.1093/cercor/bhj050.
Haber, S. N., & Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology, 35(1), 4–26. https://doi.org/10.1038/npp.2009.129.
Haber, S. N., Lynd-Balta, E., & Spooren, W. P. J. M. (1994). Integrative aspects of basal ganglia circuitry. In G. Percheron, J.S. McKenzie, & J. Féger (Eds.), The basal ganglia IV. Advances in behavioral biology (vol. 41). Boston: Springer. https://doi.org/10.1007/978-1-4613-0485-2_7.
Hiebert, N. M., Vo, A., Hampshire, A., Owen, A. M., Seergobin, K. N., & MacDonald, P. A. (2014). Striatum in stimulus–response learning via feedback and in decision making. NeuroImage, 101(Supplement C), 448–457. https://doi.org/10.1016/j.neuroimage.2014.07.013.
Hübner, R., & Schlösser, J. (2010). Monetary reward increases attentional effort in the flanker task. [journal article]. Psychonomic Bulletin & Review, 17(6), 821–826. https://doi.org/10.3758/pbr.17.6.821.
Jacobson, A., Green, E., & Murphy, C. (2010). Age-Related Functional Changes in Gustatory and Reward Processing Regions: An fMRI Study. NeuroImage, 53(2), 602–610. https://doi.org/10.1016/j.neuroimage.2010.05.012.
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132.
Kashkouli Nejad, K., Sugiura, M., Nozawa, T., Kotozaki, Y., Furusawa, Y., Nishino, K., et al. (2015). Supramarginal activity in interoceptive attention tasks. Neuroscience Letters, 589, 42–46. https://doi.org/10.1016/j.neulet.2015.01.031.
Keen-Rhinehart, E., Ondek, K., & Schneider, J. E. (2013). Neuroendocrine regulation of appetitive ingestive behavior. Frontiers in Neuroscience, 7, 213. https://doi.org/10.3389/fnins.2013.00213.
Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage, 19(4), 1381–1394. https://doi.org/10.1016/S1053-8119(03)00191-5.
Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156. https://doi.org/10.1016/j.neuron.2006.11.010.
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task. NeuroImage, 12(1), 20–27. https://doi.org/10.1006/nimg.2000.0593.
Ko, C.-H., Liu, G.-C., Hsiao, S., Yen, J.-Y., Yang, M.-J., Lin, W.-C., et al. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739–747. https://doi.org/10.1016/j.jpsychires.2008.09.012.
Kringelbach, M. L. (2004). Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience, 126(4), 807–819. https://doi.org/10.1016/j.neuroscience.2004.04.035.
Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. [10.1038/nrn1747]. Nature Reviews Neuroscience, 6(9), 691–702. https://doi.org/10.1038/nrn1747.
Kringelbach, M. L., O’Doherty, J., Rolls, E. T., & Andrews, C. (2003). Activation of the Human Orbitofrontal Cortex to a Liquid Food Stimulus is Correlated with its Subjective Pleasantness. Cerebral Cortex, 13(10), 1064–1071. https://doi.org/10.1093/cercor/13.10.1064.
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341–372. https://doi.org/10.1016/j.pneurobio.2004.03.006.
Krug, M. K., & Braver, T. S. (2014). Motivation and cognitive control: Going beyond monetary incentives. In: Bijleveld E., Aarts H. (eds) The Psychological Science of Money (pp. 137–162). Springer, New York, NY, https://doi.org/10.1007/978-1-4939-0959-9_10.
Kühn, S., & Gallinat, J. (2011). A Quantitative Meta Analysis on Cue Induced Male Sexual Arousal. The Journal of Sexual Medicine, 8(8), 2269–2275. https://doi.org/10.1111/j.1743-6109.2011.02322.x.
Lehéricy, S., Ducros, M., Van De Moortele, P.-F., Francois, C., Thivard, L., Poupon, C., Swindale, N., Ugurbil, K., & Kim, D.-S. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55(4), 522–529. https://doi.org/10.1002/ana.20030.
Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428. https://doi.org/10.1093/scan/nsp052.
Liljeholm, M., Dunne, S., & O’Doherty, J. P. (2014). Anterior Insula Activity Reflects the Effects of Intentionality on the Anticipation of Aversive Stimulation. The Journal of Neuroscience, 34(34), 11339–11348. https://doi.org/10.1523/jneurosci.1126-14.2014.
Lutter, M., & Nestler, E. J. (2009). Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. The Journal of Nutrition, 139(3), 629–632. https://doi.org/10.3945/jn.108.097618.
Metereau, E., & Dreher, J.-C. (2013). Cerebral Correlates of Salient Prediction Error for Different Rewards and Punishments. Cerebral Cortex, 23(2), 477–487. https://doi.org/10.1093/cercor/bhs037.
Mohanty, A., Gitelman, D. R., Small, D. M., & Mesulam, M. M. (2008). The Spatial Attention Network Interacts with Limbic and Monoaminergic Systems to Modulate Motivation-Induced Attention Shifts. Cerebral Cortex (New York, NY), 18(11), 2604–2613. https://doi.org/10.1093/cercor/bhn021.
Morris, J. S., & Dolan, R. J. (2001). Involvement of Human Amygdala and Orbitofrontal Cortex in Hunger-Enhanced Memory for Food Stimuli. The Journal of Neuroscience, 21(14), 5304–5310.
Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489–497. https://doi.org/10.1016/j.tics.2007.08.013.
Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, A., Mars, N. J., Holroyd, R. B., C. B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. NeuroImage, 25(4), 1302–1309. https://doi.org/10.1016/j.neuroimage.2004.12.043.
Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 1050–1054, https://doi.org/10.1073/pnas.0706929105.
Plata-Salamán, C. R. (1991). Regulation of Hunger and Satiety in Man. Digestive Diseases, 9(5), 253–268. https://doi.org/10.1159/000171310.
Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015a). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage, 112, 278–287. https://doi.org/10.1016/j.neuroimage.2015.02.063.
Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015b). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064.
Pursey, K. M., Stanwell, P., Callister, R. J., Brain, K., Collins, C. E., & Burrows, T. L. (2014). Neural Responses to Visual Food Cues According to Weight Status: A Systematic Review of Functional Magnetic Resonance Imaging Studies. [Review]. Frontiers in Nutrition, 1(7), https://doi.org/10.3389/fnut.2014.00007.
Rapuano, K. M., Huckins, J. F., Sargent, J. D., Heatherton, T. F., & Kelley, W. M. (2016). Individual Differences in Reward and Somatosensory-Motor Brain Regions Correlate with Adiposity in Adolescents. Cerebral Cortex, 26(6), 2602–2611. https://doi.org/10.1093/cercor/bhv097.
Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage, 23(2), 752–763. https://doi.org/10.1016/j.neuroimage.2004.06.035.
Robbins, T. W., & Everitt, B. J. (1992). Functions of dopamine in the dorsal and ventral striatum. Seminars in Neuroscience, 4(2), 119–127. https://doi.org/10.1016/1044-5765(92)90010-Y.
Rolls, E. T. (2006). Brain mechanisms underlying flavour and appetite. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1471), 1123–1136. https://doi.org/10.1098/rstb.2006.1852.
Rolls, E. T. (2008). Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiologica Hungarica, 95(2), 131–164. https://doi.org/10.1556/APhysiol.95.2008.2.1.
Rolls, E. T. (2016). Functions of the anterior insula in taste, autonomic, and related functions. Brain and Cognition, 110, 4–19. https://doi.org/10.1016/j.bandc.2015.07.002.
Rolls, E. T., Yaxley, S., & Sienkiewicz, Z. J. (1990). Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Journal of Neurophysiology, 64(4), 1055–1066.
Saper, C. B., Chou, T. C., & Elmquist, J. K. (2002). The Need to Feed: Homeostatic and Hedonic Control of Eating. Neuron, 36(2), 199–211. https://doi.org/10.1016/S0896-6273(02)00969-8.
Schienle, A., Schäfer, A., Hermann, A., & Vaitl, D. (2009). Binge-Eating Disorder: Reward Sensitivity and Brain Activation to Images of Food. Biological Psychiatry, 65(8), 654–661. https://doi.org/10.1016/j.biopsych.2008.09.028.
Schultz, W., Dayan, P., & Montague, R. P. (1997). A Neural Substrate of Prediction and Reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593.
Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., & Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404(6778), 661–671. https://doi.org/10.1038/35007534.
Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681–696. https://doi.org/10.1016/j.neubiorev.2013.02.002.
Simon, J. J., Skunde, M., Wu, M., Schnell, K., Herpertz, S. C., Bendszus, M., et al. (2014). Neural dissociation of food- and money-related reward processing using an abstract incentive delay task. Social Cognitive and Affective Neuroscience, 10(8), 1113–1120. https://doi.org/10.1093/scan/nsu162.
Simon, J. J., Wetzel, A., Sinno, M. H., Skunde, M., Bendszus, M., Preissl, H., et al. (2017). Integration of homeostatic signaling and food reward processing in the human brain. JCI Insight, 2(15), e92970. https://doi.org/10.1172/jci.insight.92970.
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062.
Steward, T., Picó-Pérez, M., Mata, F., Martínez-Zalacaín, I., Cano, M., Contreras-Rodríguez, O., et al. (2016). Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity. PLOS ONE, 11(3), e0152150. https://doi.org/10.1371/journal.pone.0152150.
Stoeckel, L. E., Kim, J., Weller, R. E., Cox, J. E., Cook, E. W., & Horwitz, B. (2009). Effective connectivity of a reward network in obese women. Brain research bulletin, 79(6), 388–395. https://doi.org/10.1016/j.brainresbull.2009.05.016.
Verdejo-Román, J., Fornito, A., Soriano-Mas, C., Vilar-López, R., & Verdejo-García, A. (2017a). Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight. NeuroImage, 146(Supplement C), 293–300. https://doi.org/10.1016/j.neuroimage.2016.11.011.
Verdejo-Román, J., Vilar-López, R., Navas, J. F., Soriano-Mas, C., & Verdejo-García, A. (2017b). Brain reward system’s alterations in response to food and monetary stimuli in overweight and obese individuals. Human Brain Mapping, 38(2), 666–677. https://doi.org/10.1002/hbm.23407.
Völlm, B., Richardson, P., McKie, S., Elliott, R., Dolan, M., & Deakin, B. (2007). Neuronal correlates of reward and loss in Cluster B personality disorders: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 156(2), 151–167. https://doi.org/10.1016/j.pscychresns.2007.04.008.
Weaver, M. R., & Brittin, H. C. (2001). Food Preferences of Men and Women by Sensory Evaluation Versus Questionnaire. Family and Consumer Sciences Research Journal, 29(3), 288–301. https://doi.org/10.1177/1077727x01293006.
Wright, H., Li, X., Fallon, N. B., Crookall, R., Giesbrecht, T., Thomas, A., et al. (2016). Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. The European Journal of Neuroscience, 43(9), 1181–1189. https://doi.org/10.1111/ejn.13182.
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. [10.1038/nmeth.1635]. Nature Methods, 8(8), 665–670. https://doi.org/10.1038/nmeth.1635.
Acknowledgements
The authors do not have any additional financial disclosures. ND, TFM and MH designed research. MY and MG conducted research. MG provided essential support in analysis. MY, MH and ND analyzed data and performed statistical analysis. MY, ND and TFM wrote paper. MY, ND and TFM had primary responsibility for final content.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have nothing to disclose.
Sources of Support
This work was supported by an intramural grant (E05-2014) of the University of Lübeck to ND and by a grant from the Deutsche Forschungsgemeinschaft (SFB TR134, C01) to TFM. ND is currently an honorary research fellow at the University of Cambridge, funded by the Deutsche Forschungsgemeinschaft (DO1915/1–1).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yousuf, M., Heldmann, M., Göttlich, M. et al. Neural processing of food and monetary rewards is modulated by metabolic state. Brain Imaging and Behavior 12, 1379–1392 (2018). https://doi.org/10.1007/s11682-017-9811-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-017-9811-y