Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity

Abstract

Schizophrenia patients are at high risk for cigarette smoking, but the neurobiological mechanisms of this comorbid association are relatively unknown. Long-term nicotine intake may impact brain that are independently and additively associated with schizophrenia. We investigated whether altered intrinsic brain activity (iBA) related to schizophrenia pathology is also associated with nicotine addiction. Forty-two schizophrenia patients (21 smokers and 21 nonsmokers) and 21 sex- and age-matched healthy nonsmokers underwent task-free functional MRI. Whole brain iBA was measured by the amplitude of spontaneous low frequency fluctuation. Furthermore, correlation analyses between iBA, symptom severity and nicotine addiction severity were performed. We found that prefrontal cortex, right caudate, and right postcentral gyrus were related to both disease and nicotine addiction effects. More importantly, schizophrenia smokers, compared to schizophrenia nonsmokers showed reversed iBA in the above brain regions. In addition, schizophrenia smokers, relative to nonsmokers, altered iBA in the left striatal and motor cortices. The iBA of the right caudate was negatively correlated with symptom severity. The iBA of the right postcentral gyrus negatively correlated with nicotine addiction severity. The striatal and motor cortices could potentially increase the vulnerability of smoking in schizophrenia. More importantly, smoking reversed iBA in the right striatal and prefrontal cortices, consistent with the self-medication theory in schizophrenia. Smoking altered left striatal and motor cortices activity, suggesting that the nicotine addiction effect was independent of disease. These results provide a local property of intrinsic brain activity mechanism that contributes to cigarette smoking and schizophrenia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., Flach, K., Nagamoto, H., Bickford, P., Leonard, S., & Freedman, R. (1998). Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin, 24(2), 189–202.

    CAS  PubMed  Article  Google Scholar 

  2. Bak, N., Rostrup, E., Larsson, H. B., Glenthoj, B. Y., & Oranje, B. (2014). Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia. Human Brain Mapping, 35(8), 3578–3587.

    PubMed  Article  Google Scholar 

  3. Bilder, R. M., Goldman, R. S., Robinson, D., Reiter, G., Bell, L., Bates, J. A., Pappadopulos, E., Willson, D. F., Alvir, J. M., Woerner, M. G., Geisler, S., Kane, J. M., & Lieberman, J. A. (2000). Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. The American Journal of Psychiatry, 157(4), 549–559.

    CAS  PubMed  Article  Google Scholar 

  4. Brody, A. L. (2006). Functional brain imaging of tobacco use and dependence. Journal of Psychiatric Research, 40(5), 404–418.

    PubMed  Article  Google Scholar 

  5. Brody, A. L., Mandelkern, M. A., Jarvik, M. E., Lee, G. S., Smith, E. C., Huang, J. C., Bota, R. G., Bartzokis, G., & London, E. D. (2004a). Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biological Psychiatry, 55(1), 77–84.

    PubMed  Article  Google Scholar 

  6. Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Scheibal, D., Hahn, E., Shiraga, S., Zamora-Paja, E., Farahi, J., Saxena, S., London, E. D., & McCracken, J. T. (2006). Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Archives of General Psychiatry, 63(7), 808–816.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., Lee, G. S., Huang, J., Hahn, E. L., & Mandelkern, M. A. (2004b). Smoking-induced ventral striatum dopamine release. The American Journal of Psychiatry, 161(7), 1211–1218.

    PubMed  Article  Google Scholar 

  8. Chakos, M. H., Lieberman, J. A., Bilder, R. M., Borenstein, M., Lerner, G., Bogerts, B., Wu, H., Kinon, B., & Ashtari, M. (1994). Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. The American Journal of Psychiatry, 151(10), 1430–1436.

    CAS  PubMed  Article  Google Scholar 

  9. Chapman, S., Ragg, M., & McGeechan, K. (2009). Citation bias in reported smoking prevalence in people with schizophrenia. The Australian and New Zealand Journal of Psychiatry, 43(3), 277–282.

    PubMed  Article  Google Scholar 

  10. Cullen, K. R., Wallace, S., Magnotta, V. A., Bockholt, J., Ehrlich, S., Gollub, R. L., Manoach, D. S., Ho, B. C., Clark, V. P., Lauriello, J., Bustillo, J. R., Schulz, S. C., Andreasen, N. C., Calhoun, V. D., Lim, K. O., & White, T. (2012). Cigarette smoking and white matter microstructure in schizophrenia. Psychiatry Research, 201(2), 152–158.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Dalack, G. W., Healy, D. J., & Meador-Woodruff, J. H. (1998). Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. The American Journal of Psychiatry, 155(11), 1490–1501.

    CAS  PubMed  Article  Google Scholar 

  12. de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76(2–3), 135–157.

    PubMed  Article  Google Scholar 

  13. Dome, P., Lazary, J., Kalapos, M. P., & Rihmer, Z. (2010). Smoking, nicotine and neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 34(3), 295–342.

    CAS  PubMed  Article  Google Scholar 

  14. Etter, M., Mohr, S., Garin, C., & Etter, J. F. (2004). Stages of change in smokers with schizophrenia or schizoaffective disorder and in the general population. Schizophrenia Bulletin, 30(2), 459–468.

    PubMed  Article  Google Scholar 

  15. Fedota, J. R., & Stein, E. A. (2015). Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Annals of the New York Academy of Sciences, 1349, 64–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Fryer, S. L., Roach, B. J., Wiley, K., Loewy, R. L., Ford, J. M., & Mathalon, D. H. (2016). Reduced amplitude of low-frequency brain oscillations in the psychosis risk syndrome and early illness schizophrenia. Neuropsychopharmacology, 41(9), 2388–2398.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Gong, Q., Lui, S., & Sweeney, J. A. (2016). A Selective Review of Cerebral Abnormalities in Patients With First-Episode Schizophrenia Before and After Treatment. The American Journal of Psychiatry, 173(3), 232–243.

    PubMed  Article  Google Scholar 

  18. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86(9), 1119–1127.

    CAS  PubMed  Article  Google Scholar 

  19. Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., & Milham, M. P. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20.

    PubMed  Article  Google Scholar 

  20. Huang, X. Q., Lui, S., Deng, W., Chan, R. C., Wu, Q. Z., Jiang, L. J., Zhang, J. R., Jia, Z. Y., Li, X. L., Li, F., Chen, L., Li, T., & Gong, Q. Y. (2010). Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage, 49(4), 2901–2906.

    PubMed  Article  Google Scholar 

  21. Ji, G.-J., Liao, W., Chen, F.-F., Zhang, L., & Wang, K. (2017). Low-frequency blood oxygen level-dependent fluctuations in the brain white matter: more than just noise. Scientific Bulletin, 62, 656–657.

    CAS  Google Scholar 

  22. Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: new results. The American Journal of Psychiatry, 149(4), 488–493.

    CAS  PubMed  Article  Google Scholar 

  23. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.

    CAS  PubMed  Article  Google Scholar 

  24. Kelly, D. L., McMahon, R. P., Wehring, H. J., Liu, F., Mackowick, K. M., Boggs, D. L., Warren, K. R., Feldman, S., Shim, J. C., Love, R. C., & Dixon, L. (2011). Cigarette smoking and mortality risk in people with schizophrenia. Schizophrenia Bulletin, 37(4), 832–838.

    PubMed  Article  Google Scholar 

  25. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217–238.

    PubMed  Article  Google Scholar 

  26. Leyba, L., Mayer, A. R., Gollub, R. L., Andreasen, N. C., & Clark, V. P. (2008). Smoking status as a potential confound in the BOLD response of patients with schizophrenia. Schizophrenia Research, 104(1–3), 79–84.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Lui, S., Zhou, X. J., Sweeney, J. A., & Gong, Q. (2016). Psychoradiology: The Frontier of Neuroimaging in Psychiatry. Radiology, 281(2), 357–372.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Mackowick, K. M., Barr, M. S., Wing, V. C., Rabin, R. A., Ouellet-Plamondon, C., & George, T. P. (2014). Neurocognitive endophenotypes in schizophrenia: modulation by nicotinic receptor systems. Progress in Neuropsychopharmacology and Biological Psychiatry, 52, 79–85.

    CAS  Article  Google Scholar 

  29. Manzella, F., Maloney, S. E., & Taylor, G. T. (2015). Smoking in schizophrenic patients: A critique of the self-medication hypothesis. World Journal of Psychiatry, 5(1), 35–46.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Meda, S. A., Wang, Z., Ivleva, E. I., Poudyal, G., Keshavan, M. S., Tamminga, C. A., Sweeney, J. A., Clementz, B. A., Schretlen, D. J., Calhoun, V. D., Lui, S., Damaraju, E., & Pearlson, G. D. (2015). Frequency-Specific Neural Signatures of Spontaneous Low-Frequency Resting State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium. Schizophrenia Bulletin, 41(6), 1336–1348.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Mohamed, S., Rosenheck, R. A., Lin, H., Swartz, M., McEvoy, J., & Stroup, S. (2015). Randomized Trial of the Effect of Four Second-Generation Antipsychotics and One First-Generation Antipsychotic on Cigarette Smoking, Alcohol, and Drug Use in Chronic Schizophrenia. The Journal of Nervous and Mental Disease, 203(7), 486–492.

    PubMed  Article  Google Scholar 

  32. Moran, L. V., Sampath, H., Kochunov, P., & Hong, L. E. (2013). Brain circuits that link schizophrenia to high risk of cigarette smoking. Schizophrenia Bulletin, 39(6), 1373–1381.

    PubMed  Article  Google Scholar 

  33. Mueller, S., Wang, D., Pan, R., Holt, D. J., & Liu, H. (2015). Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia. JAMA Psychiatry, 72(6), 552–560.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Northoff, G., & Duncan, N. W. (2016). How do abnormalities in the brain’s spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Progress in Neurobiology, 145–146, 26–45.

    PubMed  Article  Google Scholar 

  35. Nyback, H., Nordberg, A., Langstrom, B., Halldin, C., Hartvig, P., Ahlin, A., Swahn, C. G., & Sedvall, G. (1989). Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Progress in Brain Research, 79, 313–319.

    CAS  PubMed  Article  Google Scholar 

  36. Potvin, S., Lungu, O., Lipp, O., Lalonde, P., Zaharieva, V., Stip, E., Melun, J. P., & Mendrek, A. (2016). Increased ventro-medial prefrontal activations in schizophrenia smokers during cigarette cravings. Schizophrenia Research, 173(1–2), 30–36.

    PubMed  Article  Google Scholar 

  37. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Ren, W., Lui, S., Deng, W., Li, F., Li, M., Huang, X., Wang, Y., Li, T., Sweeney, J. A., & Gong, Q. (2013). Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. The American Journal of Psychiatry, 170(11), 1308–1316.

    PubMed  Article  Google Scholar 

  39. Schneider, C. E., White, T., Hass, J., Geisler, D., Wallace, S. R., Roessner, V., Holt, D. J., Calhoun, V. D., Gollub, R. L., & Ehrlich, S. (2014). Smoking status as a potential confounder in the study of brain structure in schizophrenia. Journal of Psychiatric Research, 50, 84–91.

    PubMed  Article  Google Scholar 

  40. Schwartz, R. C. (2007). Concurrent validity of the Global Assessment of Functioning Scale for clients with schizophrenia. Psychological Reports, 100(2), 571–574.

    PubMed  Article  Google Scholar 

  41. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Sorg, C., Manoliu, A., Neufang, S., Myers, N., Peters, H., Schwerthoffer, D., Scherr, M., Muhlau, M., Zimmer, C., Drzezga, A., Forstl, H., Bauml, J., Eichele, T., Wohlschlager, A. M., & Riedl, V. (2013). Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophrenia Bulletin, 39(2), 387–395.

    PubMed  Article  Google Scholar 

  43. Sun, Y., Chen, Y., Collinson, S. L., Bezerianos, A., & Sim, K. (2015). Reduced Hemispheric Asymmetry of Brain Anatomical Networks Is Linked to Schizophrenia: A Connectome Study. Cereb Cortex).

  44. Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage, 62(4), 2281–2295.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Tang, J., Liao, Y., Deng, Q., Liu, T., Chen, X., Wang, X., Xiang, X., Chen, H., & Hao, W. (2012). Altered spontaneous activity in young chronic cigarette smokers revealed by regional homogeneity. Behavioral and Brain Functions, 8, 44.

    PubMed  Article  Google Scholar 

  46. Tidey, J. W., & Miller, M. E. (2015). Smoking cessation and reduction in people with chronic mental illness. BMJ, 351, h4065.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Turner, J. A., Chen, H., Mathalon, D. H., Allen, E. A., Mayer, A. R., Abbott, C. C., Calhoun, V. D., & Bustillo, J. (2012). Reliability of the amplitude of low-frequency fluctuations in resting state fMRI in chronic schizophrenia. Psychiatry Research, 201(3), 253–255.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Wang, H. L., Rau, C. L., Li, Y. M., Chen, Y. P., & Yu, R. (2015). Disrupted thalamic resting-state functional networks in schizophrenia. Frontiers in Behavioral Neuroscience, 9, 45.

    PubMed  PubMed Central  Google Scholar 

  49. Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 1092–1099.

    PubMed  Article  Google Scholar 

  50. Wu, G., Yang, S., Zhu, L., & Lin, F. (2015). Altered spontaneous brain activity in heavy smokers revealed by regional homogeneity. Psychopharmacology (Berl), 232(14), 2481–2489.

    CAS  Article  Google Scholar 

  51. Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Yang, A. C., Hong, C. J., Liou, Y. J., Huang, K. L., Huang, C. C., Liu, M. E., Lo, M. T., Huang, N. E., Peng, C. K., Lin, C. P., & Tsai, S. J. (2015). Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness. Human Brain Mapping, 36(6), 2174–2186.

    PubMed  Article  Google Scholar 

  53. Yu, R., Chien, Y. L., Wang, H. L., Liu, C. M., Liu, C. C., Hwang, T. J., Hsieh, M. H., Hwu, H. G., & Tseng, W. Y. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637.

    PubMed  Article  Google Scholar 

  54. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.

    Article  Google Scholar 

  55. Zhang, X., Stein, E. A., & Hong, L. E. (2010). Smoking and schizophrenia independently and additively reduce white matter integrity between striatum and frontal cortex. Biological Psychiatry, 68(7), 674–677.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was funded by the National Science and Technologic Program of China (2015BAI13B02).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lian Du.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Luo, Q., Du, W. et al. Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity. Brain Imaging and Behavior 12, 1457–1465 (2018). https://doi.org/10.1007/s11682-017-9806-8

Download citation

Keywords

  • Cigarette smoking
  • Intrinsic brain activity
  • Resting-state
  • Schizophrenia
  • Self-medication