Neural correlates of verbal memory in youth with heavy prenatal alcohol exposure

  • Lauren A. Gross
  • Eileen M. Moore
  • Jeffrey R. Wozniak
  • Claire D. Coles
  • Julie A. Kable
  • Elizabeth R. Sowell
  • Kenneth L. Jones
  • Edward P. Riley
  • Sarah N. Mattson
  • the CIFASD
Original Research

Abstract

Prenatal alcohol exposure can impact both brain development and neurobehavioral function, including verbal learning and recall, although the relation between verbal recall and brain structure in this population has not been examined fully. We aimed to determine the structural neural correlates of verbal learning and recall in youth with histories of heavy prenatal alcohol exposure using a region of interest (ROI) approach. As part of an ongoing multisite project, subjects (age 10–16 years) with prenatal alcohol exposure (AE, n = 81) and controls (CON, n = 81) were tested using the CVLT-C and measures of cortical volume, surface area, and thickness as well as hippocampal volume were derived from MRI. Group differences in brain and memory indices were tested with ANOVA. Multiple regression analyses tested whether brain ROIs significantly predicted memory performance. The AE group had lower scores than the CON group on all CVLT-C variables (ps ≤ .001) and volume and surface area (ps < .025), although results varied by ROI. No group differences in cortical thickness were found. The relations between cortical structure and memory performance differed between group among some ROIs, particularly those in the frontal cortex, generally with smaller surface area and/or thinner cortex predicting better performance in CON but worse performance in AE. Cortical surface area appears to be the most sensitive index to the effects of prenatal alcohol exposure, while cortical thickness appears to be the least sensitive. These findings also indicate that the neural correlates of verbal memory are altered in youth with heavy prenatal alcohol exposure compared to controls.

Keywords

Fetal alcohol spectrum disorders (FASD) Prenatal alcohol exposure Memory Neurobehavioral profile Brain 

Abbreviations

FASD

Fetal alcohol spectrum disorder

FAS

Fetal alcohol syndrome

CVLT-C

California Verbal Learning Test- Children’s Version

Supplementary material

11682_2017_9739_MOESM1_ESM.docx (45 kb)
ESM 1(DOCX 44 kb)
11682_2017_9739_MOESM2_ESM.docx (47 kb)
ESM 2(DOCX 46 kb)
11682_2017_9739_MOESM3_ESM.docx (46 kb)
ESM 3(DOCX 45 kb)
11682_2017_9739_MOESM4_ESM.docx (72 kb)
ESM 4(DOCX 72 kb)
11682_2017_9739_MOESM5_ESM.docx (49 kb)
ESM 5(DOCX 48 kb)

References

  1. Abbott, C. W., Kozanian, O. O., Kanaan, J., Wendel, K. M., & Huffman, K. J. (2016). The impact of prenatal ethanol exposure on neuroanatomical and behavioral development in mice. Alcoholism: Clinical and Experimental Research, 40(1), 122–133. doi:10.1111/acer.12936.CrossRefGoogle Scholar
  2. Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine and Child Neurology, 43, 148–154. doi:10.1097/00004703-200110000-00024.CrossRefPubMedGoogle Scholar
  3. Astley, S. J., Aylward, E. H., Carmichael Olson, H., Kerns, K., Brooks, A., Coggins, T. E., et al. (2009). Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcoholism: Clinical and Experimental Research, 33(10), 1671–1689. doi:10.1111/j.1530-0277.2009.01004.x.CrossRefGoogle Scholar
  4. Autti-Rämö, I., Autti, T., Korkman, M., Kettunen, S., Salonen, O., & Valanne, L. (2002). MRI findings in children with school problems who had been exposed prenatally to alcohol. Developmental Medicine and Child Neurology, 44(2), 98–106.CrossRefPubMedGoogle Scholar
  5. Biesbroek, J. M., van Zandvoort, M. J. E., Kappelle, L. J., Schoo, L., Kuijf, H. J., Velthuis, B. K., et al. (2015). Distinct anatomical correlates of discriminability and criterion setting in verbal recognition memory revealed by lesion-symptom mapping. Human Brain Mapping, 36, 1292–1303.CrossRefPubMedGoogle Scholar
  6. Brown, M. W., Warburton, E., & Aggleton, J. P. (2010). Recognition memory: material, processes, and substrates. Hippocampus, 20(11), 1228–1244.CrossRefPubMedGoogle Scholar
  7. Chen, X., Coles, C. D., Lynch, M. E., & Hu, X. (2012). Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Human Brain Mapping, 33(7), 1663–1676. doi:10.1002/hbm.21313.CrossRefPubMedGoogle Scholar
  8. Coles, C. D., Goldstein, F. C., Lynch, M. E., Chen, X., Kable, J. A., Johnson, K. C., & Hu, X. (2011). Memory and brain volume in adults prenatally exposed to alcohol. Brain and Cognition, 75(1), 67–77. doi:10.1016/j.bandc.2010.08.013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coles, C. D., Lynch, M. E., Kable, J. A., Johnson, K. C., & Goldstein, F. C. (2010). Verbal and nonverbal memory in adults prenatally exposed to alcohol. Alcoholism: Clinical and Experimental Research, 34(5), 897–906. doi:10.1111/j.1530-0277.2010.01162.x.CrossRefGoogle Scholar
  10. Crocker, N., Vaurio, L., Riley, E. P., & Mattson, S. N. (2009). Comparison of adaptive behavior in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Alcoholism: Clinical and Experimental Research, 33(11), 2015–2023. doi:10.1111/j.1530-0277.2009.01040.x.CrossRefGoogle Scholar
  11. Crocker, N., Vaurio, L., Riley, E. P., & Mattson, S. N. (2011). Comparison of verbal learning and memory in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Alcoholism: Clinical and Experimental Research, 35(6), 1114–1121. doi:10.1111/j.1530-0277.2011.01444.x.CrossRefGoogle Scholar
  12. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. NeuroImage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  13. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1994). Manual for the California Verbal Learning Test - Children's Version. San Antonio: The Psychological Corporation.Google Scholar
  14. Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343. doi:10.1017/S1355617709090481.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fernandez-Jaen, A., Fernandez-Mayoralas, D. M., Quinones Tapia, D., Calleja-Perez, B., Garcia-Segura, J. M., Arribas, S. L., & Munoz Jareno, N. (2011). Cortical thickness in fetal alcohol syndrome and attention deficit disorder. Pediatric Neurology, 45(6), 387–391. doi:10.1016/j.pediatrneurol.2011.09.004.CrossRefPubMedGoogle Scholar
  16. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80. doi:10.1109/42.906426.CrossRefPubMedGoogle Scholar
  17. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.CrossRefPubMedGoogle Scholar
  18. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.CrossRefPubMedGoogle Scholar
  19. Fryer, S. L., Mattson, S. N., Jernigan, T. L., Archibald, S. L., Jones, K. L., & Riley, E. P. (2012). Caudate volume predicts neurocognitive performance in youth with heavy prenatal alcohol exposure. Alcoholism-Clinical and Experimental Research, 36(11), 1932–1941. doi:10.1111/j.1530-0277.2012.01811.x.CrossRefGoogle Scholar
  20. Gautam, P., Lebel, C., Narr, K. L., Mattson, S. N., May, P. A., Adnams, C. M., et al. (2015). Volume changes and brain-behavior relationships in white matter and subcortical gray matter in children with prenatal alcohol exposure. Human Brain Mapping, 36(6), 2318–2329. doi:10.1002/hbm.22772.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Giedd, J. N., Raznahan, A., Alexander-Bloch, A., Schmitt, E., Gogtay, N., & Rapoport, J. L. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43–49. doi:10.1038/npp.2014.236.CrossRefPubMedGoogle Scholar
  22. Gil-Mohapel, J., Boehme, F., Kainer, L., & Christie, B. R. (2010). Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Research Reviews, 64(2), 283–303. doi:10.1016/j.brainresrev.2010.04.011.CrossRefPubMedGoogle Scholar
  23. Glass, L., Moore, E. M., Akshoomoff, N., Jones, K. L, Riley, E. P., & Mattson, S. N. (2017). Academic difficulties in children with prenatal alcohol exposure: presence, profile, and neural correlates. Alcoholism: Clinical and Experimental Research (in press).Google Scholar
  24. Gluck, M. A., Mercado, E., & Myers, C. E. (2007). Learning and memory: from brain to behavior (1st ed.). Worth Publishers.Google Scholar
  25. Goodlett, C. R., & Horn, K. H. (2001). Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Research and Health, 25(3), 175–184.PubMedGoogle Scholar
  26. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  27. Houston, S. M., Herting, M. M., & Sowell, E. R. (2014). The neurobiology of childhood structural brain development: conception through adulthood. Current Topics in Behavioral Neurosciences, 16, 3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Im, K., Lee, J.-M., Lyttelton, O., Kim, S. H., Evans, A. C., & Kim, S. I. (2008). Brain size and cortical structure in the adult human brain. Cerebral Cortex, 18(9), 2181–2191.CrossRefPubMedGoogle Scholar
  29. Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., et al. (2015). Test–retest reliability of freesurfer measurements within and between sites: effects of visual approval process. Human Brain Mapping, 36(9), 3472–3485.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jones, K. L., Robinson, L. K., Bakhireva, L. N., Marintcheva, G., Storojev, V., Strahova, A., et al. (2006). Accuracy of the diagnosis of physical features of fetal alcohol syndrome by pediatricians after specialized training. Pediatrics, 118(6), E1734–E1738. doi:10.1542/peds.2006-1037.CrossRefPubMedGoogle Scholar
  31. Joseph, J., Warton, C., Jacobson, S. W., Jacobson, J. L., Molteno, C. D., Eicher, A., et al. (2014). Three-dimensional surface deformation-based shape analysis of hippocampus and caudate nucleus in children with fetal alcohol spectrum disorders. Human Brain Mapping, 35(2), 659–672. doi:10.1002/hbm.22209.CrossRefPubMedGoogle Scholar
  32. Lebel, C., Mattson, S. N., Riley, E. P., Jones, K. L., Adnams, C. M., May, P. A., et al. (2012). A longitudinal study of the long-term consequences of drinking during pregnancy: heavy in utero Alcohol exposure disrupts the normal processes of brain development. Journal of Neuroscience, 32(44), 15243–15251. doi:10.1523/JNEUROSCI.1161-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lebel, C., Roussotte, F., & Sowell, E. R. (2011). Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychology Review, 21(2), 102–118. doi:10.1007/s11065-011-9163-0.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lenroot, R. K., & Giedd, J. N. (2008). The changing impact of genes and environment on brain development during childhood and adolescence: initial findings from a neuroimaging study of pediatric twins. Development and Psychopathology, 20(4), 1161–1175. doi:10.1017/S0954579408000552.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lewis, C. E., Thomas, K. G., Dodge, N. C., Molteno, C. D., Meintjes, E. M., Jacobson, J. L., & Jacobson, S. W. (2015). Verbal learning and memory impairment in children with fetal alcohol spectrum disorders. Alcoholism: Clinical and Experimental Research, 39(4), 724–732.CrossRefGoogle Scholar
  36. Maclaren, J., Han, Z., Vos, S. B., Fischbein, N., & Bammer, R. (2014). Reliability of brain volume measurements: a test-retest dataset. Scientific data, 1.Google Scholar
  37. Manji, S., Pei, J., Loomes, C., & Rasmussen, C. (2009). A review of the verbal and visual memory impairments in children with foetal alcohol spectrum disorders. Developmental Neurorehabilitation, 12(4), 239–247. doi:10.1080/17518420902980118.CrossRefPubMedGoogle Scholar
  38. Mattson, S. N., Crocker, N., & Nguyen, T. T. (2011). Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychology Review, 21(2), 81–101. doi:10.1007/s11065-011-9167-9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mattson, S. N., Foroud, T., Sowell, E. R., Jones, K. L., Coles, C. D., Fagerlund, Å., et al., CIFASD. (2010). Collaborative initiative on fetal alcohol spectrum disorders: methodology of clinical projects. Alcohol, 44(7–8), 635–641. doi:10.1016/j.alcohol.2009.08.005.
  40. Mattson, S. N., Riley, E. P., Gramling, L. J., Delis, D. C., & Jones, K. L. (1998). Neuropsychological comparison of alcohol-exposed children with or without physical features of fetal alcohol syndrome. Neuropsychology, 12(1), 146–153. doi:10.1037/0894-4105.12.1.146.CrossRefPubMedGoogle Scholar
  41. Mattson, S. N., & Roebuck, T. M. (2002). Acquisition and retention of verbal and nonverbal information in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 26(6), 875–882. doi:10.1111/j.1530-0277.2002.tb02617.x.CrossRefGoogle Scholar
  42. Medina, A. E. (2011). Fetal alcohol Spectrum disorders and abnormal neuronal plasticity. The Neuroscientist, 17(3), 274–287.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Migliorini, R., Moore, E. M., Glass, L., Infante, M. A., Tapert, S. F., Jones, K. L., et al. (2015). Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure. Behavioural Brain Research, 292, 26–35.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Monjauze, C., Broadbent, H., Boyd, S. G., Neville, B. G. R., & Baldeweg, T. (2011). Language deficits and altered hemispheric lateralization in young people in remission from BECTS. Epilepsia, 52(8), e79–e83.CrossRefPubMedGoogle Scholar
  45. Moore, E. M., Migliorini, R., Infante, M. A., & Riley, E. P. (2014). Fetal alcohol spectrum disorders: recent neuroimaging findings. Curr Dev Disord Rep, 1(3), 161–172. doi:10.1007/s40474-014-0020-8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moore, E. M., & Riley, E. P. (2015). What happens when children with fetal alcohol spectrum disorders become adults? Curr Dev Disord Rep, 2(3), 219–227. doi:10.1007/s40474-015-0053-7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nardelli, A., Lebel, C., Rasmussen, C., Andrew, G., & Beaulieu, C. (2011). Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol spectrum disorders. Alcoholism: Clinical and Experimental Research, 35(8), 1404–1417. doi:10.1111/j.1530-0277.2011.01476.x.Google Scholar
  48. O'Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., Mattson, S. N., O'Connor, M. J., & Sowell, E. R. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Human Brain Mapping, 30(10), 3200–3208. doi:10.1002/hbm.20741.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Østby, Y., Tamnes, C. K., Fjell, A. M., & Walhovd, K. B. (2011). Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia, 49, 3854–3862.CrossRefPubMedGoogle Scholar
  50. Pakkenberg, B., & Gundersen, H. J. G. (1997). Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology, 384(2), 312–320. doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K.CrossRefPubMedGoogle Scholar
  51. Panczakiewicz, A., Doyle, L. R., Coles, C. D., Kable, J. A., Sowell, E. R., Wozniak, J. R., Jones, K. L., Riley E. P., Mattson, S. N., & the CIFASD (2016). Age and prenatal alcohol exposure: Effects on verbal learning and memory. Manuscript in preparation.Google Scholar
  52. Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., ... & Xian, H. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, bhp026.Google Scholar
  53. Rajaprakash, M., Chakravarty, M. M., Lerch, J. P., & Rovet, J. (2014). Cortical morphology in children with alcohol-related neurodevelopmental disorder. Brain and Behavior: A Cognitive Neuroscience Perspective, 4(1), 41–50. doi:10.1002/brb3.191.CrossRefGoogle Scholar
  54. Riley, E. P., Infante, M. A., & Warren, K. R. (2011). Fetal alcohol spectrum disorders: an overview. Neuropsychology Review, 21(2), 73–80. doi:10.1007/s11065-011-9166-x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Robertson, F. C., Narr, K. L., Molteno, C. D., Jacobson, J. L., Jacobson, S. W., & Meintjes, E. M. (2016). Prenatal alcohol exposure is associated with regionally thinner cortex during the preadolescent period. Cerebral Cortex, 26(7), 3083–3095.CrossRefPubMedGoogle Scholar
  56. Roussotte, F. F., Sulik, K. K., Mattson, S. N., Riley, E. P., Jones, K. L., Adnams, C. M., et al. (2012). Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders. Human Brain Mapping, 33(4), 920–937. doi:10.1002/hbm.21260.CrossRefPubMedGoogle Scholar
  57. Scheinost, D., Lacadie, C., Vohr, B. R., Schneider, K. C., Papademetris, X., Constable, R. T., & Ment, L. R. (2015). Cerebral lateralization is protective in the very prematurely born. Cerebral Cortex, 25, 1858–1866.CrossRefPubMedGoogle Scholar
  58. Sowell, E. R., Delis, D. C., Stiles, J., & Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. Journal of the International Neuropsychological Society, 7(3), 312–322.CrossRefPubMedGoogle Scholar
  59. Sowell, E. R., Lu, L. H., O'Hare, E. D., McCourt, S. T., Mattson, S. N., O'Connor, M. J., & Bookheimer, S. Y. (2007). Functional magnetic resonance imaging of verbal learning in children with heavy prenatal alcohol exposure. Neuroreport, 18(7), 635–639. doi:10.1097/WNR.0b013e3280bad8dc.CrossRefPubMedGoogle Scholar
  60. Sowell, E. R., Mattson, S. N., Kan, E., Thompson, P. M., Riley, E. P., & Toga, A. W. (2008). Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cerebral Cortex, 18(1), 136–144. doi:10.1093/cercor/bhm039.CrossRefPubMedGoogle Scholar
  61. Sowell, E. R., Thompson, P. M., Mattson, S. N., Tessner, K. D., Jernigan, T. L., Riley, E. P., & Toga, A. W. (2002). Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cerebral Cortex, 12(8), 856–865. doi:10.1093/cercor/12.8.856.CrossRefPubMedGoogle Scholar
  62. Tamnes, C. K., Walhovd, K. B., Grydeland, H., Holland, D., Østby, Y., Dale, A. M., & Fjell, A. M. (2013). Longitudinal working memory development is relatead to structural maturation of frontal and parietal cortices. Journal of Cognitive Neuroscience, 25(10), 1611–1623.CrossRefPubMedGoogle Scholar
  63. Treit, S., Lebel, C., Baugh, L., Rasmussen, C., Andrew, G., & Beaulieu, C. (2013). Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol spectrum disorders. Journal of Neuroscience, 33(24), 10098–10109. doi:10.1523/JNEUROSCI.5004-12.2013.CrossRefPubMedGoogle Scholar
  64. Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia, 42, 1394–1413.CrossRefPubMedGoogle Scholar
  65. Vaurio, L., Riley, E. P., & Mattson, S. N. (2011). Neuropsychological comparison of children with heavy prenatal alcohol exposure and an IQ-matched comparison group. Journal of the International Neuropsychological Society, 17(3), 463–473. doi:10.1017/S1355617711000063.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Walhovd, K. B., Fjell, A. M., Giedd, J., Dale, A. M., & Brown, T. T. (2016). Through thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cerebral Cortex, 1–10.Google Scholar
  67. Wilde, E. A., Newsome, M. R., Bigler, E. D., Pertab, J., Merkley, T. L., Hanten, G., et al. (2011). Brain imaging correlates of verbal working memory in children following traumatic brain injury. International Journal of Psychophysiology, 82(1), 86–96.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Willoughby, K. A., Sheard, E. D., Nash, K., & Rovet, J. (2008). Effects of prenatal alcohol exposure on hippocampal volume, verbal learning, and verbal and spatial recall in late childhood. Journal of the International Neuropsychological Society, 14(6), 1022–1033. doi:10.1017/S1355617708081368.CrossRefPubMedGoogle Scholar
  69. Yang, Y. L., Roussotte, F., Kan, E., Sulik, K. K., Mattson, S. N., Riley, E. P., et al. (2012). Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cerebral Cortex, 22(5), 1170–1179. doi:10.1093/cercor/bhr193.CrossRefPubMedGoogle Scholar
  70. Zhou, D., Lebel, C., Lepage, C., Rasmussen, C., Evans, A., Wyper, K., et al. (2011). Developmental cortical thinning in fetal alcohol spectrum disorders. NeuroImage, 58(1), 16–25. doi:10.1016/j.neuroimage.2011.06.026.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lauren A. Gross
    • 1
  • Eileen M. Moore
    • 1
  • Jeffrey R. Wozniak
    • 2
  • Claire D. Coles
    • 3
    • 4
  • Julie A. Kable
    • 4
  • Elizabeth R. Sowell
    • 5
  • Kenneth L. Jones
    • 6
  • Edward P. Riley
    • 1
  • Sarah N. Mattson
    • 1
  • the CIFASD
  1. 1.Center for Behavioral Teratology, Department of PsychologySan Diego State UniversitySan DiegoUSA
  2. 2.Department of PsychiatryUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA
  4. 4.Department of PediatricsEmory University School of MedicineAtlantaUSA
  5. 5.Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Department of Pediatrics, School of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations