Skip to main content
Log in

Altered segregation between task-positive and task-negative regions in mild traumatic brain injury

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFNI:

Analysis of Functional NeuroImages

fMRI:

functional magnetic resonance imaging;

GCS:

Glasgow Coma Score

MACE:

Military Acute Concussion Evaluation

MFG:

middle frontal gyrus

mTBI:

mild traumatic brain injury

PCC:

posterior cingulate cortex

ROI:

region of interest

RPQ:

Rivermead Post-Concussion Symptoms Questionnaire

TBI:

traumatic brain injury

References

  • Balenzuela, P., Chernomoretz, A., Fraiman, D., Cifre, I., Sitges, C., Montoya, P., & Chialvo, D. R. (2010). Modular organization of brain resting state networks in chronic back pain patients. Frontiers in Neuroinformatics, 4, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., Walker, S. (2014). Package Lme4: Linear mixed-effects models using Eigen and S4. Journal of Statistical Software, 64.

  • Bazarian, J. J., McClung, J., Shah, M. N., Cheng, Y. T., Flesher, W., & Kraus, J. (2005). Mild traumatic brain injury in the United States, 1998–2000. Brain Injury, 19, 85–91.

    Article  PubMed  Google Scholar 

  • Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31, 13442–13451.

    Article  PubMed  CAS  Google Scholar 

  • Caeyenberghs, K., Leemans, A., Heitger, M. H., Leunissen, I., Dhollander, T., Sunaert, S., Dupont, P., & Swinnen, S. P. (2012). Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 135, 1293–1307.

    Article  PubMed  Google Scholar 

  • Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., & Swinnen, S. P. (2013). Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 7, 726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C. J., Wu, C. H., Liao, Y. P., Hsu, H. L., Tseng, Y. C., Liu, H. L., & Chiu, W. T. (2012). Working memory in patients with mild traumatic brain injury: Functional MR imaging analysis. Radiology, 264, 844–851.

    Article  PubMed  Google Scholar 

  • Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magentic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine, 42, 1014–1018.

    Article  PubMed  CAS  Google Scholar 

  • Dean, P. J., Sato, J. R., Vieira, G., McNamara, A., & Sterr, A. (2015). Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome. Brain and Behavior: A Cognitive Neuroscience Perspective, 5, 45–61.

    Article  Google Scholar 

  • DePalma, R. G., Hoffman, S. W. (2016). Combat blast related traumatic brain injury (TBI): Decade of recognition; promise of progress. Behavioural Brain Research.

  • D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 761–772.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dischinger, P. C., Ryb, G. E., Kufera, J. A., & Auman, K. M. (2009). Early predictors of postconcussive syndrome in a population of trauma patients with mild traumatic brain injury. The Journal of Trauma, 66, 289–296 discussion 296-7.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325–1335.

    Article  PubMed  Google Scholar 

  • Faul, M., Xu, L., Wald, M., Coronado, V. (2010). Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths. Center of Disease Control.

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56, 171–184.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, S., Jensen, P., & Arenas, A. (2009). Analysis of community structure in networks of correlated data. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80, 016114.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). SIgnal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, 28, 1051–1057.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. The Journal of Neuroscience, 26, 13338–13343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, K., Chapman, S. B., & Krawczyk, D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and Frontoparietal control networks in individuals with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 22, 263–279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, K., Mac Donald, C. L., Johnson, A. M., Barnes, Y., Wierzechowski, L., Zonies, D., Oh, J., Flaherty, S., Fang, R., Raichle, M. E., & Brody, D. L. (2013). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. NeuroImage, 84C, 76–96.

    Google Scholar 

  • Hillary, F. G., Rajtmajer, S. M., Roman, C. A., Medaglia, J. D., Slocomb-Dluzen, J. E., Calhoun, V. D., Good, D. C., & Wylie, G. R. (2014). The rich get richer: Brain injury elicits hyperconnectivity in core subnetworks. PloS One, 9, e104021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D., Wang, J., Good, D. C., & Wylie, G. R. (2011). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology, 82, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Iraji, A., Benson, R. R., Welch, R. D., O'Neil, B. J., Woodard, J. L., Ayaz, S. I., Kulek, A., Mika, V., Medado, P., Soltanian-Zadeh, H., Liu, T., Haacke, E. M., Kou, Z. (2014). Resting state functional connectivity in mild traumatic brain injury at the acute stage: Independent component and seed based analyses. Journal of Neurotrauma.

  • Johansson, B., Berglund, P., & Ronnback, L. (2009). Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Injury, 23, 1027–1040.

    Article  PubMed  Google Scholar 

  • Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. NeuroImage, 59, 511–518.

    Article  PubMed  Google Scholar 

  • Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527–537.

    Article  PubMed  Google Scholar 

  • King, N. S., Crawford, S., Wenden, F. J., Moss, N. E., & Wade, D. T. (1995). The Rivermead post Concussion symptoms Questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. Journal of Neurology, 242, 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Kinnison, J., Padmala, S., Choi, J. M., & Pessoa, L. (2012). Network analysis reveals increased integration during emotional and motivational processing. The Journal of Neuroscience, 32, 8361–8372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2014). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R Package Version 2.0–11.

  • Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A User's guide. New York: Cambridge University Press.

    Google Scholar 

  • Marquez de la Plata, C. D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., Spence, J., Devous, M. D. S., Moore, C., McColl, R., Madden, C., & Diaz-Arrastia, R. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68, 74–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Bellgowan, P. S., & Hanlon, F. M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neuroscience and Biobehavioral Reviews, 49C, 8–18.

    Article  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Yang, Z., Yeo, R. A., Pena, A., Ling, J. M., Mannell, M. V., Stippler, M., & Mojtahed, K. (2012). A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging and Behavior, 6, 343–354.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: Evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23, 1450–1467.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., Mamourian, A. C., Weaver, J. B., & Yanofsky, N. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology, 53, 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  • McCrea, M., Kelly, J., Randolph, C. (2000). Standardized assessment of Concussion (SAC): Manual for adminstration, scoring, and interpretation, comprehensive neuropsychological services, 2nd edn.

  • McDowell, S., Whyte, J., & D'Esposito, M. (1997). Working memory impairments in traumatic brain injury: Evidence from a dual-task paradigm. Neuropsychologia, 35, 1341–1353.

    Article  PubMed  CAS  Google Scholar 

  • McMenamin, B. W., Langeslag, S. J., Sirbu, M., Padmala, S., & Pessoa, L. (2014). Network organization unfolds over time during periods of anxious anticipation. The Journal of Neuroscience, 34, 11261–11273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messe, A., Caplain, S., Pelegrino-Issac, M., Blancho, S., Levy, R., Aghakhani, N., Montreuil, M., Benali, H., & Lehericy, S. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PloS One, 8, e65470.

  • Miotto, E. C., Cinalli, F. Z., Serrao, V. T., Benute, G. G., Lucia, M. C., & Scaff, M. (2010). Cognitive deficits in patients with mild to moderate traumatic brain injury. Arquivos de Neuro-Psiquiatria, 68, 862–868.

    Article  PubMed  Google Scholar 

  • Najafi, M., McMenamin, B. W., Simon, J. Z., & Pessoa, L. (2016). Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions. NeuroImage, 135, 92–106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.

    Article  Google Scholar 

  • Newman, M. E. (2010). Networks: An introduction. New York: Oxford UP.

    Book  Google Scholar 

  • Newton, A. T., Morgan, V. L., Rogers, B. P., & Gore, J. C. (2011). Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load. Human Brain Mapping, 32, 1649–1659.

    Article  PubMed  Google Scholar 

  • Pandit, A. S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F. E., & Sharp, D. J. (2013). Traumatic brain injury impairs small-world topology. Neurology, 80, 1826–1833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11, 400–435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessoa, L., Gutierrez, E., Bandettini, P., & Ungerleider, L. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35, 975–987.

    Article  PubMed  CAS  Google Scholar 

  • Pessoa, L., & Ungerleider, L. G. (2004). Neural correlates of change detection and change blindness in a working memory task. Cerebral Cortex, 14, 511–520.

    Article  PubMed  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer.

  • Ponsford, J. (2013). Factors contributing to outcome following traumatic brain injury. NeuroRehabilitation, 32, 803–815.

    PubMed  Google Scholar 

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann TO, Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. NeuroImage, 56, 2276–2282.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rigon, A., Duff, M. C., McAuley, E., Kramer, A. F., Voss, M. W. (2016). Is traumatic brain injury associated with reduced inter-hemispheric functional connectivity? A study of large-scale resting state networks following traumatic brain injury. Journal of Neurotrauma.

  • Rossi, R., Zammit, S., Button, K. S., Munafo, M. R., Lewis, G., & David, A. S. (2016). Psychotic experiences and working memory: A population-based study using signal-detection analysis. PloS One, 11, e0153148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.

    Article  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. NeuroImage, 56, 2068–2079.

    Article  PubMed  Google Scholar 

  • Sala-Llonch, R., Pena-Gomez, C., Arenaza-Urquijo, E. M., Vidal-Pineiro, D., Bargallo, N., Junque, C., & Bartres-Faz, D. (2012). Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex, 48, 1187–1196.

    Article  PubMed  Google Scholar 

  • Seabold, J. S., Perktold, J. (2010). Statsmodels: Econometric and statistical moedling with python. Proceedings of the 9th python in science conference.

  • Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., Powell, J. H., Counsell, S. J., Patel, M. C., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247.

    Article  PubMed  Google Scholar 

  • Shumskaya, E., Andriessen, T. M. J. C., Norris, D. G., & Vos, P. E. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79, 176–182.

    Article  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Smits, M., Dippel, D. W., Houston, G. C., Wielopolski, P. A., Koudstaal, P. J., Hunink, M. G., & van der Lugt, A. (2009). Postconcussion syndrome after minor head injury: Brain activation of working memory and attention. Human Brain Mapping, 30, 2789–2803.

    Article  PubMed  Google Scholar 

  • Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R. P. (2013). Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Research, 1537, 201–215.

    Article  PubMed  CAS  Google Scholar 

  • Sours, C., Zhuo, J., Roys, S., Shanmuganathan, K., & Gullapalli, R. P. (2015). Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PloS One, 10, e0134019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein, M. B., & McAllister, T. W. (2009). Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. The American Journal of Psychiatry, 166, 768–776.

    Article  PubMed  Google Scholar 

  • Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6, 293–318.

    Article  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.

    Google Scholar 

  • van der Horn, H. J., Liemburg, E. J., Scheenen, M. E., de Koning, M. E., Spikman, J. M., van der Naalt, J. (2015). Post-concussive complaints after mild traumatic brain injury associated with altered brain networks during working memory performance. Brain Imaging and Behavior.

  • Witt, S. T., Lovejoy, D. W., Pearlson, G. D., & Stevens, M. C. (2010). Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging and Behavior, 4, 232–247.

    Article  PubMed  Google Scholar 

  • Wylie, G. R., Freeman, K., Thomas, A., Shpaner, M., OKeefe, M., Watts, R., & Naylor, M. R. (2015). Cognitive improvement after mild traumatic brain injury measured with functional neuroimaging during the acute period. PloS One, 10, e0126110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., Grossman, R. I., & Ge, Y. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265, 882–892.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandler Sours.

Ethics declarations

Funding

Support for this work was in part provided by the Department of Defense (W81XWH-08-1-0725 & W81XWH-12-1-0098 to R.P.G). Chandler Sours was supported by the NRSA grant from the National Institute of Neurological Disorders and Stroke (1F31NS081984).

Conflict of interest

All of the authors included in this manuscript declare that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sours, C., Kinnison, J., Padmala, S. et al. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury. Brain Imaging and Behavior 12, 697–709 (2018). https://doi.org/10.1007/s11682-017-9724-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9724-9

Keywords

Navigation