Skip to main content

Advertisement

Log in

Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D–T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

GM:

Gray matter

WM:

White matter

ALS:

Amyotrophic lateral sclerosis (ALS)

HC:

Healthy controls

GMV:

Gray matter volume

FA:

Fractional anisotropy

AD:

Axial diffusivity

RD:

Radial diffusivity

MND:

Motor neuron disorders

CNS:

Central nervous system

FTD:

Frontotemporal dementia

TBSS:

Tract-based spatial statistics

MRI:

Magnetic resonance imaging

VBM:

Voxel-based morphometry

ALSFRS-R:

Revised Amyotrophic Lateral Sclerosis Functional Rating Scale

HR_3DT1w:

3D–T1-weighted sequence;

DTI:

Diffusion-tensor imaging

T2-FLAIR:

T2-Fluid attenuation inversion recovery

SPM:

Statistical Parametric Mapping

CSF:

Cerebrospinal fluid

FWHM:

Full-width-at-half-maximum

TIV:

Total intracranial volume

FWE:

Family-wise error

FMRIB:

Functional Magnetic Resonance Imaging of the Brain

FSL:

FMRIB Software Library

MNI:

Montreal Neurological Institute

TFCE:

Threshold-free cluster enhancement

ACC:

Anterior cingulate cortex

SMA:

Supplementary motor area

CST:

Corticospinal tract

CC:

Corpus callosum

UF:

Uncinate fasciculus

SLF:

Superior longitudinal fasciculus

IFOF:

Inferior fronto-occipital fasciculus

SBM:

Surface-based morphometry

fMRI:

Functional magnetic resonance imaging.

References

  • Abdulla, S., Machts, J., Kaufmann, J., Patrick, K., Kollewe, K., Dengler, R., et al. (2014). Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 35, 2639–2645.

    Article  PubMed  Google Scholar 

  • Abe, O., Yamada, H., Masutani, Y., Aoki, S., Kunimatsu, A., Yamasue, H., et al. (2004). Amyotrophic lateral sclerosis: Diffusion tensor tractography and voxel-based analysis. NMR in Biomedicine, 17, 411–416.

    Article  PubMed  Google Scholar 

  • Agosta, F., Pagani, E., Rocca, M. A., Caputo, D., Perini, M., Salvi, F., et al. (2007). Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Human Brain Mapping, 28, 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Agosta, F., Chiò, A., Cosottini, M., De Stefano, N., Falini, A., Mascalchi, M., et al. (2010). The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR. American Journal of Neuroradiology, 31, 1769–1777.

    Article  CAS  PubMed  Google Scholar 

  • Agosta, F., Valsasina, P., Riva, N., Copetti, M., Messina, M. J., Prelle, A., et al. (2012). The cortical signature of amyotrophic lateral sclerosis. PloS One, 7, e42816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agosta, F., Canu, E., Valsasina, P., Riva, N., Prelle, A., Comi, G., et al. (2013). Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging, 34, 419–427.

    Article  PubMed  Google Scholar 

  • Agosta, F., Ferraro, P. M., Riva, N., Spinelli, E. G., Chiò, A., Canu, E., et al. (2016). Structural brain correlates of cognitive and behavioral impairment in MND. Human Brain Mapping, 37, 1614–1626.

    Article  PubMed  Google Scholar 

  • Alberdi, A., Aztiria, A., & Basarab, A. (2016). On the early diagnosis of Alzheimer’s disease from multimodal signals: A survey. Artificial Intelligence in Medicine, 71, 1–29.

    Article  PubMed  Google Scholar 

  • Bailly, M., Destrieux, C., Hommet, C., Mondon, K., Cottier, J.P., Beaufils, E., et al. (2015). Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and (18)F-FDG PET quantitative analysis using FreeSurfer. Biomed Research International, 2015. doi:10.1155/2012/473538.

  • Bede, P. (2017). From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. Future Neurology, 12, 5–8.

    Article  CAS  Google Scholar 

  • Bede, P., & Hardiman, O. (2014). Lessons of ALS imaging: Pitfalls and future directions – A critical review. Neuroimage Clinical, 4, 436–443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bede, P., Bokde, A., Elamin, M., Byrne, S., McLaughlin, R. L., Jordan, N., et al. (2013a). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): A neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 766–773.

    Article  PubMed  Google Scholar 

  • Bede, P., Bokde, A. L., Byrne, S., Elamin, M., McLaughlin, R. L., Kenna, K., et al. (2013b). Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology, 81, 361–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brettschneider, J., Del Tredici, K., Toledo, J. B., Robinson, J. L., Irwin, D. J., Grossman, M., et al. (2013). Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 74, 20–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks, B. R., Miller, R. G., Swash, M., Munsat, T. L., & World Federation of Neurology Research Group on Motor Neuron Diseases. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • van der Burgh, H. K., Schmidt, R., Westeneng, H. J., de Reus, M. A., van den Berg, L. H., & van den Heuvel, M. P. (2017). Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin, 13, 361–369.

    Article  PubMed  Google Scholar 

  • Canu, E., Agosta, F., Riva, N., Sala, S., Prelle, A., Caputo, D., et al. (2011). The topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor MR imaging. AJNR. American Journal of Neuroradiology, 32, 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.

    Article  PubMed  Google Scholar 

  • Chang, J. L., Lomen-Hoerth, C., Murphy, J., Henry, R. G., Kramer, J. H., Miller, B. L., et al. (2005). A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology, 65, 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, M. C., Jelsone-Swain, L., Johnson, T. D., Gruis, K. L., & Welsh, R. C. (2014). Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging, 39, 641–647.

    Article  PubMed  Google Scholar 

  • Christidi, F., Zalonis, I., Kyriazi, S., Rentzos, M., Karavasilis, E., Wilde, E. A., et al. (2014). Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: A diffusion tensor imaging and neuropsychological study. Brain Imaging and Behavior, 8, 497–505.

    Article  PubMed  Google Scholar 

  • Christidi, F., Karavasilis, E., Zalonis, I., Ferentinos, P., Giavri, Z., Wilde, E. A., et al. (2017). Memory-related white matter tract integrity in amyotrophic lateral sclerosis: An advanced neuroimaging and neuropsychological study. Neurobiology of Aging, 49, 69–78.

    Article  PubMed  Google Scholar 

  • Ciccarelli, O., Behrens, T. E., Johansen-Berg, H., Talbot, K., Orrell, R. W., Howard, R. S., et al. (2009). Investigation of white matter pathology in ALS and PLS using tract based spatial statistics. Human Brain Mapping, 30, 615–624.

    Article  PubMed  Google Scholar 

  • Corcia, P., Pradat, P. F., Salachas, F., Bruneteau, G., Forestier, N. I., Seilhean, D., et al. (2008). Causes of death in a post-mortem series of ALS patients. Amyotrophic Lateral Sclerosis, 9, 59–62.

    Article  PubMed  Google Scholar 

  • Devine, M. S., Pannek, K., Coulthard, A., McCombe, P. A., Rose, S. E., & Henderson, R. D. (2015). Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis. NeuroImage Clinical, 7, 782–787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, X. Q., Kollewe, K., Blum, K., Körner, S., Kehbel, S., Dengler, R., et al. (2011). Value of quantitative analysis of routine clinical MRI sequences in ALS. Amyotrophic Lateral Sclerosis, 12, 406–413.

    Article  PubMed  Google Scholar 

  • Elamin, M., Phukan, J., Bede, P., Jordan, N., Byrne, S., Pender, N., et al. (2011). Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology, 76, 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  • Elamin, M., Bede, P., Byrne, S., Jordan, N., Gallagher, L., Wynne, B., et al. (2013). Cognitive changes predict functional decline in ALS: A population-based longitudinal study. Neurology, 80, 1590–1597.

    Article  PubMed  Google Scholar 

  • Ellis, C. M., Simmons, A., Jones, D. K., Bland, J., Dawson, J. M., Horsfield, M. A., et al. (1999). Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology, 53, 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, C. M., Suckling, J., Amaro Jr., E., Bullmore, E. T., Simmons, A., Williams, S. C., et al. (2001). Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology, 57, 1571–1578.

    Article  CAS  PubMed  Google Scholar 

  • Fatima, M., Tan, R., Halliday, G. M., & Kril, J. J. (2015). Spread of pathology in amyotrophic lateral sclerosis: Assessment of phosphorylated TDP-43 axonal pathways. Acta Neuropathologica Communications, 3, 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filippini, N., Douaud, G., MacKay, C. E., Knight, S., Talbot, K., & Turner, M. R. (2010). Corpus Callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology, 75, 1645–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fountoulakis, K. N., Tsolaki, M., Chantzi, H., & Kazis, A. (2000). Mini-mental state examination (MMSE): A validation study in Greece. American Journal of Alzheimer's Disease and Other Dementias, 15, 342–345.

    Article  Google Scholar 

  • Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: Nature of impairment and implications for assessment. Lancet Neurology, 12, 368–380.

    Article  PubMed  Google Scholar 

  • Gordon, P. H., Goetz, R. R., Rabkin, J. G., Dalton, K., McElhiney, M., Hays, A. P., et al. (2010). A prospective cohort study of neuropsychological test performance in ALS. Amyotrophic Lateral Sclerosis, 11, 312–320.

    Article  PubMed  Google Scholar 

  • Grosskreutz, J., Kaufmann, J., Frädrich, J., Dengler, R., Heinze, H. J., & Peschel, T. (2006). Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurology, 6, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanganu, A., & Monchi, O. (2016). Structural neuroimaging markers of cognitive decline in Parkinson’s disease. Parkinsons Dis, 2016, 3217960.

    PubMed  PubMed Central  Google Scholar 

  • Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23, 54–63.

    Article  PubMed  Google Scholar 

  • Iwata, N. K., Kwan, J. Y., Danielian, L. E., Butman, J. A., Tovar-Moll, F., Bayat, E., et al. (2011). White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain, 134, 2642–2655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasper, E., Schuster, C., Machts, J., Kaufmann, J., Bittner, D., Vielhaber, S., et al. (2014). Microstructural white matter changes underlying cognitive and behavioural impairment in ALS--an in vivo study using DTI. PloS One, 9, e114543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasper, E., Zydatiss, K., Schuster, C., Machts, J., Bittner, D., Kaufmann, J., et al. (2016). No change in executive performance in ALS patients: A longitudinal neuropsychological study. Neurodegenerative Diseases, 16, 184–191.

    Article  PubMed  Google Scholar 

  • Kassubek, J., Unrath, A., Huppertz, H. J., Lulé, D., Ethofer, T., Sperfeld, A. D., et al. (2005). Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 6, 213–220.

    Article  PubMed  Google Scholar 

  • Keil, C., Prell, T., Peschel, T., Hartung, V., Dengler, R., & Grosskreutz, J. (2012). Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neuroscience, 13, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller, J., Vymazal, J., Ridzoň, P., Rusina, R., Kulišt'ák, P., Malíková, H., et al. (2011). Quantitative brain MR imaging in amyotrophic lateral sclerosis. Magma, 24, 67–76.

    Article  PubMed  Google Scholar 

  • Kew, J. J., Goldstein, L. H., Leigh, P. N., Abrahams, S., Cosgrave, N., Passingham, R. E., et al. (1993). The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain, 116, 1399–1423.

    PubMed  Google Scholar 

  • Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., et al. (2011). Amyotrophic lateral sclerosis. Lancet, 377, 942–955.

    Article  CAS  PubMed  Google Scholar 

  • Kilani, M., Micallef, J., Soubrouillard, C., Rey-Lardiller, D., Demattei, C., Dib, M., et al. (2004). A longitudinal study of the evolution of cognitive function and affective state in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 5, 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Kwan, J. Y., Meoded, A., Danielian, L. E., Wu, T., & Floeter, M. K. (2012). Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clinical, 2, 151–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2004). Neuropsycholoical Assessment (5th ed.). NY: Oxford University Press.

    Google Scholar 

  • Li, H., Chen, Y., Li, Y., Yin, B., Tang, W., Yu, X., et al. (2015). Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: A parametric functional MRI study. European Radiology, 25, 2584–2592.

    Article  PubMed  Google Scholar 

  • Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., et al. (2012). Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology, 26, 422–429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillo, P., Mioshi, E., Burrell, J. R., Kiernan, M., Hodges, J. R., & Hornberger, M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PloS One, 7, e43993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomen-Hoerth, C., Murphy, J., Langmore, S., Kramer, J. H., Olney, R. K., & Miller, B. (2003). Are amyotrophic lateral sclerosis patients cognitively normal? Neurology, 60, 1094–1097.

    Article  CAS  PubMed  Google Scholar 

  • Machts, J., Loewe, K., Kaufmann, J., Jakubiczka, S., Abdulla, S., Petri, S., et al. (2015). Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 85, 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  • Menke, R. A., Körner, S., Filippini, N., Douaud, G., Knight, S., Talbot, K., et al. (2014). Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain, 137, 2546–2555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menke, R. A., Proudfoot, M., Wuu, J., Andersen, P. M., Talbot, K., Benatar, M., et al. (2016). Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. Journal of Neurology, Neurosurgery, and Psychiatry, 87, 580–588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meoded, A., Kwan, J. Y., Peters, T. L., Huey, E. D., Danielian, L. E., Wiggs, E., et al. (2013). Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dementia and Geriatric Cognitive Disorders Extra, 3, 233–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metwalli, N. S., Benatar, M., Nair, G., Usher, S., Hu, X., & Carew, J. D. (2010). Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Research, 1348, 156–164.

    Article  CAS  PubMed  Google Scholar 

  • Mezzapesa, D. M., Ceccarelli, A., Dicuonzo, F., Carella, A., De Caro, M. F., Lopez, M., et al. (2007). Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR. American Journal of Neuroradiology, 28, 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Mezzapesa, D. M., D'Errico, E., Tortelli, R., Distaso, E., Cortese, R., Tursi, M., et al. (2013). Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis. PloS One, 8, e80748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mioshi, E., Lillo, P., Yew, B., Hsieh, S., Savage, S., Hodges, J. R., et al. (2013). Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 80, 1117–1123.

    Article  PubMed  Google Scholar 

  • Montuschi, A., Iazzolino, B., Calvo, A., Moglia, C., Lopiano, L., Restagno, G., et al. (2015). Cognitive correlates in amyotrophic lateral sclerosis: A population-based study in Italy. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 168–173.

    Article  PubMed  Google Scholar 

  • Nasrallah, I. M., & Wolk, D. A. (2014). Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. Journal of Nuclear Medicine, 55, 2003–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.

    Article  CAS  PubMed  Google Scholar 

  • Nenadic, I., Smesny, S., Schlösser, R. G., Sauer, H., & Gaser, C. (2010). Auditory hallucinations and brain structure in schizophrenia: Voxel-based morphometric study. The British Journal of Psychiatry, 196, 412–413.

    Article  PubMed  Google Scholar 

  • Ogawa, T., Tanaka, H., & Hirata, K. (2009). Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clinical Neurophysiology, 120, 659–664.

    Article  PubMed  Google Scholar 

  • Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S., et al. (2012). The syndrome of cognitive impairment in amyotrophic lateral sclerosis: A population-based study. Journal of Neurology, Neurosurgery, and Psychiatry, 83, 102–108.

    Article  PubMed  Google Scholar 

  • Pradat, P.-F., & El Mendili, M. M. (2014). Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. BioMed Research International, 2014, 467560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prell, T., Peschel, T., Hartung, V., Kaufmann, J., Klauschies, R., Bodammer, N., et al. (2013). Diffusion tensor imaging patterns differ in bulbar and limb onset amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery, 115, 1281–1287.

    Article  PubMed  Google Scholar 

  • Rajagopalan, V., & Pioro, E. P. (2015). Disparate voxel based morphometry (VBM) results between SPM and FSL softwares in ALS patients with frontotemporal dementia: Which VBM results to consider? BMC Neurology, 15, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–590.

    Article  CAS  PubMed  Google Scholar 

  • Rippon, G. A., Scarmeas, N., Gordon, P. H., Murphy, P. L., Albert, S. M., Mitsumoto, H., et al. (2006). An observational study of cognitive impairment in amyotrophic lateral sclerosis. Archives of Neurology, 63, 345–352.

    Article  PubMed  Google Scholar 

  • Robinson, K. M., Lacey, S. C., Grugan, P., Glosser, G., Grossman, M., & McCluskey, L. F. (2006). Cognitive functioning in sporadic amyotrophic lateral sclerosis: A six month longitudinal study. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 668–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roccatagliata, L., Bonzano, L., Mancardi, G., Canepa, C., & Caponnetto, C. (2009). Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10, 47–52.

    Article  PubMed  Google Scholar 

  • Rosskopf, J., Muller, H. P., Dreyhaupt, J., Gorges, M., Gorges, A. C., Ludolph, A. C., & Kassubek, J. (2015). Ex post facto assessment of diffusion tensor imaging metrics from different MRI protocols: Preparing for multicentre studies in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 92–101.

    Article  PubMed  Google Scholar 

  • Rusina, R., Ridzon, P., Kulistak, P., Keller, O., Bartos, A., Buncova, M., et al. (2009). Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome: A prospective study. European Journal of Neurology, 17, 23–30.

    Article  PubMed  Google Scholar 

  • Saberi, S., Stauffer, J. E., Schulte, D. J., & Ravits, J. (2015). Neuropathology of amyotrophic lateral sclerosis and its variants. Neurology Clinics, 33, 855–876.

    Article  Google Scholar 

  • Sach, M., Winkler, G., Glauche, V., Liepert, J., Heimbach, B., Koch, M. A., et al. (2004). Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain, 127, 340–350.

    Article  PubMed  Google Scholar 

  • Sage, C. A., Peeters, R. R., Görner, A., Robberecht, W., & Sunaert, S. (2007). Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. NeuroImage, 34, 486–499.

    Article  PubMed  Google Scholar 

  • Sage, C. A., Van Hecke, W., Peeters, R., Sijbers, J., Robberecht, W., Parizel, P., et al. (2009). Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: Revisited. Human Brain Mapping, 30, 3657–3675.

    Article  PubMed  Google Scholar 

  • Sarica, A., Cerasa, A., Vasta, R., Perrotta, P., Valentino, P., Mangone, G., et al. (2014). Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: A study with tract-based reconstruction compared to voxel-based approach. Journal of Neuroscience Methods, 224, 79–87.

    Article  PubMed  Google Scholar 

  • Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., et al. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: A diffusion tensor Tractography study. AJNR. American Journal of Neuroradiology, 32, 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  • Sato, K., Aoki, S., Iwata, N. K., Masutani, Y., Watadani, T., Nakata, Y., et al. (2010). Diffusion tensor imaging tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis. Neuroradiology, 52, 729–733.

    Article  PubMed  Google Scholar 

  • Schoenfeld, M. A., Tempelmann, C., Gaul, C., Kühnel, G. R., Düzel, E., Hopf, J. M., et al. (2005). Functional motor compensation in amyotrophic lateral sclerosis. Journal of Neurology, 252, 944–952.

    Article  PubMed  Google Scholar 

  • Schuster, C., Kasper, E., Machts, J., Bittner, D., Kaufmann, J., Benecke, R., et al. (2013). Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: A neuroimaging study. Journal of Neurology, 260, 2856–2864.

    Article  PubMed  Google Scholar 

  • Schuster, C., Kasper, E., Dyrba, M., Machts, J., Bittner, D., Kaufmann, J., et al. (2014). Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis. Neurobiology of Aging, 35, 240–246.

    Article  PubMed  Google Scholar 

  • Schuster, C., Hardiman, O., & Bede, P. (2016). Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: A quantitative disease-state classification study. PloS One, 11, e0167331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shellikeri, S., Karthikeyan, V., Martino, R., Black, S. E., Zinman, L., Keith, J., et al. (2017). The neuropathological signature of bulbar-onset ALS: A systematic review. Neuroscience and Biobehavioral Reviews, 75, 378–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 83–98.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.

    Article  PubMed  Google Scholar 

  • Strauss, E., Sherman, E. M. S., & Spreen, O. (2002). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Strong, M. J., Grace, G. M., Orange, J. B., Leeper, H. A., Menon, R. S., & Aere, C. (1999). A prospective study of cognitive impairment in ALS. Neurology, 53, 1665–1670.

    Article  CAS  PubMed  Google Scholar 

  • Strong, M. J., Grace, G. M., Freedman, M., Lomen-Hoerth, C., Woolley, S., Goldstein, L. H., et al. (2009). Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10, 131–146.

    Article  PubMed  Google Scholar 

  • Tan, R. H., Devenney, E., Dobson-Stone, C., Kwok, J. B., Hodges, J. R., Kiernan, M. C., et al. (2014). Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PloS One, 9, e105632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, M., Chen, X., Zhou, Q., Liu, B., Liu, Y., Liu, S., et al. (2015). Quantitative assessment of amyotrophic lateral sclerosis with diffusion tensor imaging in 3.0 T magnetic resonance. International Journal of Clinical and Experimental Medicine, 8, 8295–8303.

    PubMed  PubMed Central  Google Scholar 

  • Thivard, L., Pradat, P. F., Lehéricy, S., Lacomblez, L., Dormont, D., Chiras, J., et al. (2007). Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: Relationships with motor disability. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 889–892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trojsi, F., Monsurrò, M. R., Esposito, F., & Tedeschi, G. (2012). Widespread structural and functional connectivity changes in amyotrophic lateral sclerosis: insights from advanced neuroimaging research. Neural Plasticity, 2012. doi:10.1155/2015/583931.

  • Tsermentseli, S., Leigh, P. N., & Goldstein, L. H. (2012). The anatomy of cognitive impairment in amyotrophic lateral sclerosis: More than frontal lobe dysfunction. Cortex, 48, 166–182.

    Article  PubMed  Google Scholar 

  • Turner, M. R., & Kiernan, M. C. (2012). Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis, 13, 245–250.

    Article  PubMed  Google Scholar 

  • Turner, M. R., & Vestraete, E. (2015). What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Current Neurology and Neuroscience Reports, 15, 45–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner, M. R., Hammers, A., Allsop, J., Al-Chalabi, A., Shaw, C. E., Brooks, D. J., et al. (2007). Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 8, 343–347.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34, 932–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschueren, J., Vanhee, A., De Coster, L., van Damme, P., & van Laere, K. (2013). Impact of the C9orf72 expansion on brain glucose metabolism in ALS patients. The Journal of Nuclear Medicine, 54, 155.

    Google Scholar 

  • Verstraete, E., & Foerster, B. R. (2015). Neuroimaging as a new diagnostic modality in amyotrophic lateral sclerosis. Neurotherapeutics, 12, 403–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraete, E., Veldink, J. H., Hendrikse, J., Schelhaas, H. J., van den Heuvel, M. P., & van den Berg, L. H. (2012). Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 83, 383–388.

    Article  PubMed  Google Scholar 

  • Verstraete, E., Turner, M. R., Grosskreutz, J., Filippi, M., Benatar, M., & Attendees of the 4th NiSALS meeting. (2015). Mind the gap: The mismatch between clinical and imaging metrics in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 524–529.

    Article  PubMed  Google Scholar 

  • Welsh, R. C., Jelsone-Swain, L. M., & Foerster, B. R. (2013). The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Frontiers in Human Neuroscience, 7, 251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westeneng, H. J., Verstraete, E., Walhout, R., Schmidt, R., Hendrikse, J., Veldink, J. H., et al. (2015). Subcortical structures in amyotrophic lateral sclerosis. Neurobiology of Aging, 36, 1075–1082.

    Article  PubMed  Google Scholar 

  • Westeneng, H. J., Walhout, R., Straathof, M., Schmidt, R., Hendrikse, J., Veldink, J. H., et al. (2016). Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. Journal of Neurology, Neurosurgery & Psychiatry, 87, 1354–1360.

    Article  Google Scholar 

  • Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D., & Evans, A. C. (1999). Detecting changes in nonisotropic images. Human Brain Mapping, 8, 98–101.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Alruwaili, A. R. S., Henderson, R. D., & McCombe, P. A. (2017). Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: Frequency of abnormality and effect on survival. Journal of the Neurological Sciences, 376, 16–23.

  • Zalonis, I., Chritsidi, F., Paraskevas, G., et al. (2012). Can executive cognitive measures differentiate between patients with spinal- and bulbar-onset amyotrophic lateral sclerosis? Archives of Clinical Neuropsychology, 27, 348–354.

  • Zamrini, E., De Santi, S., & Tolar, M. (2004). Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiology of Aging, 25, 685–691.

    Article  PubMed  Google Scholar 

  • Zhang, J., Yin, X., Zhao, L., Evans, A. C., Song, L., Xie, B., et al. (2014). Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. Journal of Neurology, 261, 412–421.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

F.C. is supported by the IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE - SIEMENS PROGRAM (SPHA:11118/13a) and IKY SHORT TERMS PROGRAM (2013-ΠΕ2-SHORT TERMS-18671). We acknowledge Odysseas Benekos, Giannis Spandonis and the Philips Medical System for providing all necessary research keys for MRI sequence acquisition. We also acknowledge the radiologists-technologists of Research Radiology & Medical Imaging Department (Ioannis Gkerles, Christos Lioulios, Anestis Passalis, Efstathios Xenos) for conducting and facilitating participants’ MR scanning. Finally, we would like to thank patients with ALS and their families, as well as healthy volunteers for their willingness to participate to the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foteini Christidi.

Ethics declarations

Funding

The study did not receive any funding. F.C. is supported by the IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE - SIEMENS PROGRAM (SPHA:11118/13a) and IKY SHORT TERMS PROGRAM (2013-ΠΕ2-SHORT TERMS-18671).

Conflict of interest

Author F.C., Author E.K., Author F.R., Author I.Z., Author P.F., Author G.V., Author S.X., Author I.Z., Author M.R., Author G.A., Author V.Z., Author T.Z., Author A.A., Author P.T., Author K.V., Author E.E., Author S.K., Author N.K., Author N.K., Author I.E. declares that she/he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christidi, F., Karavasilis, E., Riederer, F. et al. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging and Behavior 12, 547–563 (2018). https://doi.org/10.1007/s11682-017-9722-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9722-y

Keywords

Navigation