Abstract
The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D–T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).






Abbreviations
- GM:
-
Gray matter
- WM:
-
White matter
- ALS:
-
Amyotrophic lateral sclerosis (ALS)
- HC:
-
Healthy controls
- GMV:
-
Gray matter volume
- FA:
-
Fractional anisotropy
- AD:
-
Axial diffusivity
- RD:
-
Radial diffusivity
- MND:
-
Motor neuron disorders
- CNS:
-
Central nervous system
- FTD:
-
Frontotemporal dementia
- TBSS:
-
Tract-based spatial statistics
- MRI:
-
Magnetic resonance imaging
- VBM:
-
Voxel-based morphometry
- ALSFRS-R:
-
Revised Amyotrophic Lateral Sclerosis Functional Rating Scale
- HR_3DT1w:
-
3D–T1-weighted sequence;
- DTI:
-
Diffusion-tensor imaging
- T2-FLAIR:
-
T2-Fluid attenuation inversion recovery
- SPM:
-
Statistical Parametric Mapping
- CSF:
-
Cerebrospinal fluid
- FWHM:
-
Full-width-at-half-maximum
- TIV:
-
Total intracranial volume
- FWE:
-
Family-wise error
- FMRIB:
-
Functional Magnetic Resonance Imaging of the Brain
- FSL:
-
FMRIB Software Library
- MNI:
-
Montreal Neurological Institute
- TFCE:
-
Threshold-free cluster enhancement
- ACC:
-
Anterior cingulate cortex
- SMA:
-
Supplementary motor area
- CST:
-
Corticospinal tract
- CC:
-
Corpus callosum
- UF:
-
Uncinate fasciculus
- SLF:
-
Superior longitudinal fasciculus
- IFOF:
-
Inferior fronto-occipital fasciculus
- SBM:
-
Surface-based morphometry
- fMRI:
-
Functional magnetic resonance imaging.
References
Abdulla, S., Machts, J., Kaufmann, J., Patrick, K., Kollewe, K., Dengler, R., et al. (2014). Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 35, 2639–2645.
Abe, O., Yamada, H., Masutani, Y., Aoki, S., Kunimatsu, A., Yamasue, H., et al. (2004). Amyotrophic lateral sclerosis: Diffusion tensor tractography and voxel-based analysis. NMR in Biomedicine, 17, 411–416.
Agosta, F., Pagani, E., Rocca, M. A., Caputo, D., Perini, M., Salvi, F., et al. (2007). Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Human Brain Mapping, 28, 1430–1438.
Agosta, F., Chiò, A., Cosottini, M., De Stefano, N., Falini, A., Mascalchi, M., et al. (2010). The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR. American Journal of Neuroradiology, 31, 1769–1777.
Agosta, F., Valsasina, P., Riva, N., Copetti, M., Messina, M. J., Prelle, A., et al. (2012). The cortical signature of amyotrophic lateral sclerosis. PloS One, 7, e42816.
Agosta, F., Canu, E., Valsasina, P., Riva, N., Prelle, A., Comi, G., et al. (2013). Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging, 34, 419–427.
Agosta, F., Ferraro, P. M., Riva, N., Spinelli, E. G., Chiò, A., Canu, E., et al. (2016). Structural brain correlates of cognitive and behavioral impairment in MND. Human Brain Mapping, 37, 1614–1626.
Alberdi, A., Aztiria, A., & Basarab, A. (2016). On the early diagnosis of Alzheimer’s disease from multimodal signals: A survey. Artificial Intelligence in Medicine, 71, 1–29.
Bailly, M., Destrieux, C., Hommet, C., Mondon, K., Cottier, J.P., Beaufils, E., et al. (2015). Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and (18)F-FDG PET quantitative analysis using FreeSurfer. Biomed Research International, 2015. doi:10.1155/2012/473538.
Bede, P. (2017). From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. Future Neurology, 12, 5–8.
Bede, P., & Hardiman, O. (2014). Lessons of ALS imaging: Pitfalls and future directions – A critical review. Neuroimage Clinical, 4, 436–443.
Bede, P., Bokde, A., Elamin, M., Byrne, S., McLaughlin, R. L., Jordan, N., et al. (2013a). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): A neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 766–773.
Bede, P., Bokde, A. L., Byrne, S., Elamin, M., McLaughlin, R. L., Kenna, K., et al. (2013b). Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology, 81, 361–369.
Brettschneider, J., Del Tredici, K., Toledo, J. B., Robinson, J. L., Irwin, D. J., Grossman, M., et al. (2013). Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 74, 20–38.
Brooks, B. R., Miller, R. G., Swash, M., Munsat, T. L., & World Federation of Neurology Research Group on Motor Neuron Diseases. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, 293–299.
van der Burgh, H. K., Schmidt, R., Westeneng, H. J., de Reus, M. A., van den Berg, L. H., & van den Heuvel, M. P. (2017). Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin, 13, 361–369.
Canu, E., Agosta, F., Riva, N., Sala, S., Prelle, A., Caputo, D., et al. (2011). The topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor MR imaging. AJNR. American Journal of Neuroradiology, 32, 1307–1314.
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.
Chang, J. L., Lomen-Hoerth, C., Murphy, J., Henry, R. G., Kramer, J. H., Miller, B. L., et al. (2005). A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology, 65, 75–80.
Chapman, M. C., Jelsone-Swain, L., Johnson, T. D., Gruis, K. L., & Welsh, R. C. (2014). Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging, 39, 641–647.
Christidi, F., Zalonis, I., Kyriazi, S., Rentzos, M., Karavasilis, E., Wilde, E. A., et al. (2014). Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: A diffusion tensor imaging and neuropsychological study. Brain Imaging and Behavior, 8, 497–505.
Christidi, F., Karavasilis, E., Zalonis, I., Ferentinos, P., Giavri, Z., Wilde, E. A., et al. (2017). Memory-related white matter tract integrity in amyotrophic lateral sclerosis: An advanced neuroimaging and neuropsychological study. Neurobiology of Aging, 49, 69–78.
Ciccarelli, O., Behrens, T. E., Johansen-Berg, H., Talbot, K., Orrell, R. W., Howard, R. S., et al. (2009). Investigation of white matter pathology in ALS and PLS using tract based spatial statistics. Human Brain Mapping, 30, 615–624.
Corcia, P., Pradat, P. F., Salachas, F., Bruneteau, G., Forestier, N. I., Seilhean, D., et al. (2008). Causes of death in a post-mortem series of ALS patients. Amyotrophic Lateral Sclerosis, 9, 59–62.
Devine, M. S., Pannek, K., Coulthard, A., McCombe, P. A., Rose, S. E., & Henderson, R. D. (2015). Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis. NeuroImage Clinical, 7, 782–787.
Ding, X. Q., Kollewe, K., Blum, K., Körner, S., Kehbel, S., Dengler, R., et al. (2011). Value of quantitative analysis of routine clinical MRI sequences in ALS. Amyotrophic Lateral Sclerosis, 12, 406–413.
Elamin, M., Phukan, J., Bede, P., Jordan, N., Byrne, S., Pender, N., et al. (2011). Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology, 76, 1263–1269.
Elamin, M., Bede, P., Byrne, S., Jordan, N., Gallagher, L., Wynne, B., et al. (2013). Cognitive changes predict functional decline in ALS: A population-based longitudinal study. Neurology, 80, 1590–1597.
Ellis, C. M., Simmons, A., Jones, D. K., Bland, J., Dawson, J. M., Horsfield, M. A., et al. (1999). Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology, 53, 1051–1058.
Ellis, C. M., Suckling, J., Amaro Jr., E., Bullmore, E. T., Simmons, A., Williams, S. C., et al. (2001). Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology, 57, 1571–1578.
Fatima, M., Tan, R., Halliday, G. M., & Kril, J. J. (2015). Spread of pathology in amyotrophic lateral sclerosis: Assessment of phosphorylated TDP-43 axonal pathways. Acta Neuropathologica Communications, 3, 47.
Filippini, N., Douaud, G., MacKay, C. E., Knight, S., Talbot, K., & Turner, M. R. (2010). Corpus Callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology, 75, 1645–1652.
Fountoulakis, K. N., Tsolaki, M., Chantzi, H., & Kazis, A. (2000). Mini-mental state examination (MMSE): A validation study in Greece. American Journal of Alzheimer's Disease and Other Dementias, 15, 342–345.
Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: Nature of impairment and implications for assessment. Lancet Neurology, 12, 368–380.
Gordon, P. H., Goetz, R. R., Rabkin, J. G., Dalton, K., McElhiney, M., Hays, A. P., et al. (2010). A prospective cohort study of neuropsychological test performance in ALS. Amyotrophic Lateral Sclerosis, 11, 312–320.
Grosskreutz, J., Kaufmann, J., Frädrich, J., Dengler, R., Heinze, H. J., & Peschel, T. (2006). Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurology, 6, 17.
Hanganu, A., & Monchi, O. (2016). Structural neuroimaging markers of cognitive decline in Parkinson’s disease. Parkinsons Dis, 2016, 3217960.
Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23, 54–63.
Iwata, N. K., Kwan, J. Y., Danielian, L. E., Butman, J. A., Tovar-Moll, F., Bayat, E., et al. (2011). White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain, 134, 2642–2655.
Kasper, E., Schuster, C., Machts, J., Kaufmann, J., Bittner, D., Vielhaber, S., et al. (2014). Microstructural white matter changes underlying cognitive and behavioural impairment in ALS--an in vivo study using DTI. PloS One, 9, e114543.
Kasper, E., Zydatiss, K., Schuster, C., Machts, J., Bittner, D., Kaufmann, J., et al. (2016). No change in executive performance in ALS patients: A longitudinal neuropsychological study. Neurodegenerative Diseases, 16, 184–191.
Kassubek, J., Unrath, A., Huppertz, H. J., Lulé, D., Ethofer, T., Sperfeld, A. D., et al. (2005). Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 6, 213–220.
Keil, C., Prell, T., Peschel, T., Hartung, V., Dengler, R., & Grosskreutz, J. (2012). Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neuroscience, 13, 141.
Keller, J., Vymazal, J., Ridzoň, P., Rusina, R., Kulišt'ák, P., Malíková, H., et al. (2011). Quantitative brain MR imaging in amyotrophic lateral sclerosis. Magma, 24, 67–76.
Kew, J. J., Goldstein, L. H., Leigh, P. N., Abrahams, S., Cosgrave, N., Passingham, R. E., et al. (1993). The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain, 116, 1399–1423.
Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., et al. (2011). Amyotrophic lateral sclerosis. Lancet, 377, 942–955.
Kilani, M., Micallef, J., Soubrouillard, C., Rey-Lardiller, D., Demattei, C., Dib, M., et al. (2004). A longitudinal study of the evolution of cognitive function and affective state in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 5, 46–54.
Kwan, J. Y., Meoded, A., Danielian, L. E., Wu, T., & Floeter, M. K. (2012). Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clinical, 2, 151–160.
Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2004). Neuropsycholoical Assessment (5th ed.). NY: Oxford University Press.
Li, H., Chen, Y., Li, Y., Yin, B., Tang, W., Yu, X., et al. (2015). Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: A parametric functional MRI study. European Radiology, 25, 2584–2592.
Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., et al. (2012). Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology, 26, 422–429.
Lillo, P., Mioshi, E., Burrell, J. R., Kiernan, M., Hodges, J. R., & Hornberger, M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PloS One, 7, e43993.
Lomen-Hoerth, C., Murphy, J., Langmore, S., Kramer, J. H., Olney, R. K., & Miller, B. (2003). Are amyotrophic lateral sclerosis patients cognitively normal? Neurology, 60, 1094–1097.
Machts, J., Loewe, K., Kaufmann, J., Jakubiczka, S., Abdulla, S., Petri, S., et al. (2015). Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 85, 1301–1309.
Menke, R. A., Körner, S., Filippini, N., Douaud, G., Knight, S., Talbot, K., et al. (2014). Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain, 137, 2546–2555.
Menke, R. A., Proudfoot, M., Wuu, J., Andersen, P. M., Talbot, K., Benatar, M., et al. (2016). Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. Journal of Neurology, Neurosurgery, and Psychiatry, 87, 580–588.
Meoded, A., Kwan, J. Y., Peters, T. L., Huey, E. D., Danielian, L. E., Wiggs, E., et al. (2013). Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dementia and Geriatric Cognitive Disorders Extra, 3, 233–250.
Metwalli, N. S., Benatar, M., Nair, G., Usher, S., Hu, X., & Carew, J. D. (2010). Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Research, 1348, 156–164.
Mezzapesa, D. M., Ceccarelli, A., Dicuonzo, F., Carella, A., De Caro, M. F., Lopez, M., et al. (2007). Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR. American Journal of Neuroradiology, 28, 255–259.
Mezzapesa, D. M., D'Errico, E., Tortelli, R., Distaso, E., Cortese, R., Tursi, M., et al. (2013). Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis. PloS One, 8, e80748.
Mioshi, E., Lillo, P., Yew, B., Hsieh, S., Savage, S., Hodges, J. R., et al. (2013). Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 80, 1117–1123.
Montuschi, A., Iazzolino, B., Calvo, A., Moglia, C., Lopiano, L., Restagno, G., et al. (2015). Cognitive correlates in amyotrophic lateral sclerosis: A population-based study in Italy. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 168–173.
Nasrallah, I. M., & Wolk, D. A. (2014). Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. Journal of Nuclear Medicine, 55, 2003–2011.
Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.
Nenadic, I., Smesny, S., Schlösser, R. G., Sauer, H., & Gaser, C. (2010). Auditory hallucinations and brain structure in schizophrenia: Voxel-based morphometric study. The British Journal of Psychiatry, 196, 412–413.
Ogawa, T., Tanaka, H., & Hirata, K. (2009). Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clinical Neurophysiology, 120, 659–664.
Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S., et al. (2012). The syndrome of cognitive impairment in amyotrophic lateral sclerosis: A population-based study. Journal of Neurology, Neurosurgery, and Psychiatry, 83, 102–108.
Pradat, P.-F., & El Mendili, M. M. (2014). Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. BioMed Research International, 2014, 467560.
Prell, T., Peschel, T., Hartung, V., Kaufmann, J., Klauschies, R., Bodammer, N., et al. (2013). Diffusion tensor imaging patterns differ in bulbar and limb onset amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery, 115, 1281–1287.
Rajagopalan, V., & Pioro, E. P. (2015). Disparate voxel based morphometry (VBM) results between SPM and FSL softwares in ALS patients with frontotemporal dementia: Which VBM results to consider? BMC Neurology, 15, 32.
Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–590.
Rippon, G. A., Scarmeas, N., Gordon, P. H., Murphy, P. L., Albert, S. M., Mitsumoto, H., et al. (2006). An observational study of cognitive impairment in amyotrophic lateral sclerosis. Archives of Neurology, 63, 345–352.
Robinson, K. M., Lacey, S. C., Grugan, P., Glosser, G., Grossman, M., & McCluskey, L. F. (2006). Cognitive functioning in sporadic amyotrophic lateral sclerosis: A six month longitudinal study. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 668–670.
Roccatagliata, L., Bonzano, L., Mancardi, G., Canepa, C., & Caponnetto, C. (2009). Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10, 47–52.
Rosskopf, J., Muller, H. P., Dreyhaupt, J., Gorges, M., Gorges, A. C., Ludolph, A. C., & Kassubek, J. (2015). Ex post facto assessment of diffusion tensor imaging metrics from different MRI protocols: Preparing for multicentre studies in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 92–101.
Rusina, R., Ridzon, P., Kulistak, P., Keller, O., Bartos, A., Buncova, M., et al. (2009). Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome: A prospective study. European Journal of Neurology, 17, 23–30.
Saberi, S., Stauffer, J. E., Schulte, D. J., & Ravits, J. (2015). Neuropathology of amyotrophic lateral sclerosis and its variants. Neurology Clinics, 33, 855–876.
Sach, M., Winkler, G., Glauche, V., Liepert, J., Heimbach, B., Koch, M. A., et al. (2004). Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain, 127, 340–350.
Sage, C. A., Peeters, R. R., Görner, A., Robberecht, W., & Sunaert, S. (2007). Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. NeuroImage, 34, 486–499.
Sage, C. A., Van Hecke, W., Peeters, R., Sijbers, J., Robberecht, W., Parizel, P., et al. (2009). Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: Revisited. Human Brain Mapping, 30, 3657–3675.
Sarica, A., Cerasa, A., Vasta, R., Perrotta, P., Valentino, P., Mangone, G., et al. (2014). Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: A study with tract-based reconstruction compared to voxel-based approach. Journal of Neuroscience Methods, 224, 79–87.
Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., et al. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: A diffusion tensor Tractography study. AJNR. American Journal of Neuroradiology, 32, 1866–1872.
Sato, K., Aoki, S., Iwata, N. K., Masutani, Y., Watadani, T., Nakata, Y., et al. (2010). Diffusion tensor imaging tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis. Neuroradiology, 52, 729–733.
Schoenfeld, M. A., Tempelmann, C., Gaul, C., Kühnel, G. R., Düzel, E., Hopf, J. M., et al. (2005). Functional motor compensation in amyotrophic lateral sclerosis. Journal of Neurology, 252, 944–952.
Schuster, C., Kasper, E., Machts, J., Bittner, D., Kaufmann, J., Benecke, R., et al. (2013). Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: A neuroimaging study. Journal of Neurology, 260, 2856–2864.
Schuster, C., Kasper, E., Dyrba, M., Machts, J., Bittner, D., Kaufmann, J., et al. (2014). Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis. Neurobiology of Aging, 35, 240–246.
Schuster, C., Hardiman, O., & Bede, P. (2016). Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: A quantitative disease-state classification study. PloS One, 11, e0167331.
Shellikeri, S., Karthikeyan, V., Martino, R., Black, S. E., Zinman, L., Keith, J., et al. (2017). The neuropathological signature of bulbar-onset ALS: A systematic review. Neuroscience and Biobehavioral Reviews, 75, 378–392.
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 83–98.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.
Strauss, E., Sherman, E. M. S., & Spreen, O. (2002). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.
Strong, M. J., Grace, G. M., Orange, J. B., Leeper, H. A., Menon, R. S., & Aere, C. (1999). A prospective study of cognitive impairment in ALS. Neurology, 53, 1665–1670.
Strong, M. J., Grace, G. M., Freedman, M., Lomen-Hoerth, C., Woolley, S., Goldstein, L. H., et al. (2009). Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10, 131–146.
Tan, R. H., Devenney, E., Dobson-Stone, C., Kwok, J. B., Hodges, J. R., Kiernan, M. C., et al. (2014). Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PloS One, 9, e105632.
Tang, M., Chen, X., Zhou, Q., Liu, B., Liu, Y., Liu, S., et al. (2015). Quantitative assessment of amyotrophic lateral sclerosis with diffusion tensor imaging in 3.0 T magnetic resonance. International Journal of Clinical and Experimental Medicine, 8, 8295–8303.
Thivard, L., Pradat, P. F., Lehéricy, S., Lacomblez, L., Dormont, D., Chiras, J., et al. (2007). Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: Relationships with motor disability. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 889–892.
Trojsi, F., Monsurrò, M. R., Esposito, F., & Tedeschi, G. (2012). Widespread structural and functional connectivity changes in amyotrophic lateral sclerosis: insights from advanced neuroimaging research. Neural Plasticity, 2012. doi:10.1155/2015/583931.
Tsermentseli, S., Leigh, P. N., & Goldstein, L. H. (2012). The anatomy of cognitive impairment in amyotrophic lateral sclerosis: More than frontal lobe dysfunction. Cortex, 48, 166–182.
Turner, M. R., & Kiernan, M. C. (2012). Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis, 13, 245–250.
Turner, M. R., & Vestraete, E. (2015). What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Current Neurology and Neuroscience Reports, 15, 45–56.
Turner, M. R., Hammers, A., Allsop, J., Al-Chalabi, A., Shaw, C. E., Brooks, D. J., et al. (2007). Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 8, 343–347.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.
Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34, 932–940.
Verschueren, J., Vanhee, A., De Coster, L., van Damme, P., & van Laere, K. (2013). Impact of the C9orf72 expansion on brain glucose metabolism in ALS patients. The Journal of Nuclear Medicine, 54, 155.
Verstraete, E., & Foerster, B. R. (2015). Neuroimaging as a new diagnostic modality in amyotrophic lateral sclerosis. Neurotherapeutics, 12, 403–416.
Verstraete, E., Veldink, J. H., Hendrikse, J., Schelhaas, H. J., van den Heuvel, M. P., & van den Berg, L. H. (2012). Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 83, 383–388.
Verstraete, E., Turner, M. R., Grosskreutz, J., Filippi, M., Benatar, M., & Attendees of the 4th NiSALS meeting. (2015). Mind the gap: The mismatch between clinical and imaging metrics in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 524–529.
Welsh, R. C., Jelsone-Swain, L. M., & Foerster, B. R. (2013). The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Frontiers in Human Neuroscience, 7, 251.
Westeneng, H. J., Verstraete, E., Walhout, R., Schmidt, R., Hendrikse, J., Veldink, J. H., et al. (2015). Subcortical structures in amyotrophic lateral sclerosis. Neurobiology of Aging, 36, 1075–1082.
Westeneng, H. J., Walhout, R., Straathof, M., Schmidt, R., Hendrikse, J., Veldink, J. H., et al. (2016). Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. Journal of Neurology, Neurosurgery & Psychiatry, 87, 1354–1360.
Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D., & Evans, A. C. (1999). Detecting changes in nonisotropic images. Human Brain Mapping, 8, 98–101.
Xu, Z., Alruwaili, A. R. S., Henderson, R. D., & McCombe, P. A. (2017). Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: Frequency of abnormality and effect on survival. Journal of the Neurological Sciences, 376, 16–23.
Zalonis, I., Chritsidi, F., Paraskevas, G., et al. (2012). Can executive cognitive measures differentiate between patients with spinal- and bulbar-onset amyotrophic lateral sclerosis? Archives of Clinical Neuropsychology, 27, 348–354.
Zamrini, E., De Santi, S., & Tolar, M. (2004). Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiology of Aging, 25, 685–691.
Zhang, J., Yin, X., Zhao, L., Evans, A. C., Song, L., Xie, B., et al. (2014). Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. Journal of Neurology, 261, 412–421.
Acknowledgements
F.C. is supported by the IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE - SIEMENS PROGRAM (SPHA:11118/13a) and IKY SHORT TERMS PROGRAM (2013-ΠΕ2-SHORT TERMS-18671). We acknowledge Odysseas Benekos, Giannis Spandonis and the Philips Medical System for providing all necessary research keys for MRI sequence acquisition. We also acknowledge the radiologists-technologists of Research Radiology & Medical Imaging Department (Ioannis Gkerles, Christos Lioulios, Anestis Passalis, Efstathios Xenos) for conducting and facilitating participants’ MR scanning. Finally, we would like to thank patients with ALS and their families, as well as healthy volunteers for their willingness to participate to the present study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
The study did not receive any funding. F.C. is supported by the IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE - SIEMENS PROGRAM (SPHA:11118/13a) and IKY SHORT TERMS PROGRAM (2013-ΠΕ2-SHORT TERMS-18671).
Conflict of interest
Author F.C., Author E.K., Author F.R., Author I.Z., Author P.F., Author G.V., Author S.X., Author I.Z., Author M.R., Author G.A., Author V.Z., Author T.Z., Author A.A., Author P.T., Author K.V., Author E.E., Author S.K., Author N.K., Author N.K., Author I.E. declares that she/he has no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Rights and permissions
About this article
Cite this article
Christidi, F., Karavasilis, E., Riederer, F. et al. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging and Behavior 12, 547–563 (2018). https://doi.org/10.1007/s11682-017-9722-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-017-9722-y