Skip to main content

Brain size bias compensated graph-theoretical parameters are also better in women’s structural connectomes

This is a preview of subscription content, access via your institution.

References

  • Hagmann, P., Grant, P.E., & Fair, D.A. (2012). Mr connectomics: A conceptual framework for studying the developing brain. Frontiers in Systems Neuroscience, 6, 43. doi:10.3389/fnsys.2012.00043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Craddock, R.C., Milham, M.P., & LaConte, S.M. (2013). Predicting intrinsic brain activity. Neuroimage, 82, 127–136. doi:10.1016/j.neuroimage.2013.05.072.

    Article  PubMed  Google Scholar 

  • McNab, J.A., & et al. (2013). The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage, 80, 234–245. doi:10.1016/j.neuroimage.2013.05.074.

    Article  PubMed  Google Scholar 

  • Daducci, A., & et al. (2012). The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS One, 7, e48121. doi:10.1371/journal.pone.0048121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szalkai, B., Kerepesi, C., Varga, B., & Grolmusz, V. (2015). The Budapest Reference Connectome Server v2. 0. Neuroscience Letters, 595, 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Kerepesi, C., Szalkai, B., Varga, B., & Grolmusz, V. (2015). Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain. arXiv:1507.00327.

  • Agosta, F., & et al. (2014). Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.05.017.

  • Alexander-Bloch, A.F., & et al. (2014). Abnormal cortical growth in schizophrenia targets normative modules of synchronized development. Biological Psychiatry. doi:10.1016/j.biopsych.2014.02.010.

  • Baker, J.T., & et al. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71, 109–118. doi:10.1001/jamapsychiatry.2013.3469.

    Article  PubMed  PubMed Central  Google Scholar 

  • Besson, P., & et al. (2014). Structural connectivity differences in left and right temporal lobe epilepsy. Neuroimage, 100C, 135–144. doi:10.1016/j.neuroimage.2014.04.071.

    Article  Google Scholar 

  • Bonilha, L., & et al. (2014). Mapping remote subcortical ramifications of injury after ischemic strokes. Behavioural Neurology, 2014, 215380. doi:10.1155/2014/215380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahanshad, N., & et al. (2011). Sex differences in the human connectome: 4-tesla high angular resolution diffusion imaging (hardi) tractography in 234 young adult twins, 2011 IEEE international symposium on biomedical imaging: From nano to macro (pp. 939–943): IEEE.

  • Ingalhalikar, M., & et al. (2014). Sex differences in the structural connectome of the human brain, Proceedings of the National Academy of Sciences USA 111. doi:10.1073/pnas.1316909110 (pp. 823–828).

    Google Scholar 

  • Szalkai, B., Varga, B., & Grolmusz, V. (2015). Graph theoretical analysis reveals: Women’s brains are better connected than men’s. PLOS One, 10, e0130045. doi:10.1371/journal.pone.0130045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarjan, R.E. (1983). Data structures and network algorithms, vol 44 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial Applied Mathematics).

  • Hoory, S., Linial, N., & Wigderson, A. (2006). Expander graphs and their applications. Bulletin of the American Mathematical Society, 43, 439–561.

    Article  Google Scholar 

  • Lubotzky, A. (2011). Expander graphs in pure and applied mathematics. 1105. arXiv:1105.2389.

  • Kirchhoff, G. (1847). ÜBer die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annals of Physical Chemistry, 72, 497–508.

    Article  Google Scholar 

  • Chung, F.R. (1997). Spectral graph theory, American Mathematical Society, 92.

  • Hoffman, A. (1972). Eigenvalues and partitionings of the edges of a graph. Linear Algebra and Its Applications, 5, 137–146.

    Article  Google Scholar 

  • Lawler, E.L. (1976). Combinatorial optimization: Networks and matroids. Courier Dover Publications.

  • Dekaban, A.S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356. doi:10.1002/ana.410040410.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J.S., Damasio, H., & Grabowski, T.J. (2002). Normal neuroanatomical variation in the human brain: An mri-volumetric study. American Journal of Physical Anthropology, 118, 341–358. doi:10.1002/ajpa.10092.

    Article  PubMed  Google Scholar 

  • Girard, G., Whittingstall, K., Deriche, R., & Descoteaux, M. (2014). Towards quantitative connectivity analysis: Reducing tractography biases. Neuroimage, 98, 266–278. doi:10.1016/j.neuroimage.2014.04.074.

    Article  PubMed  Google Scholar 

  • Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: Where do we go from here?. Brain Connectivity, 1, 169–183. doi:10.1089/brain.2011.0033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hänggi, J., Fövenyi, L., Liem, F., Meyer, M., & Jäncke, L. (2014). The hypothesis of neuronal interconnectivity as a function of brain size-a general organization principle of the human connectome. Frontiers in Human Neuroscience, 8, 915. doi:10.3389/fnhum.2014.00915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter, M., Schmansky, N.J., Rosas, H.D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage, 61, 1402–1418. doi:10.1016/j.neuroimage.2012.02.084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basser, P.J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues eluciyeard by quantitative-diffusion-tensor mri. Journal of Magnetic Resonance, 213, 560–570. doi:10.1016/j.jmr.2011.09.022.

    Article  Google Scholar 

  • Tournier, J., Calamante, F., Connelly, A., & et al. (2012). Mrtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22, 53–66.

    Article  Google Scholar 

  • Achterberg, T., Berthold, T., Koch, T., & Wolter, K. (2008). Constraint integer programming: A new approach to integrate CP and MIP, Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 6–20): Springer.

  • Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1, 1–41.

    Article  Google Scholar 

  • Hochbaum, D.S. (1982). Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing, 11, 555–556.

    Article  Google Scholar 

  • Hoel, P.G. (1984). Introduction to mathematical statistics, 5fth edn. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Wonnacott, T.H., & Wonnacott, R.J. (1972). Introductory statistics Vol. 19690. New York: Wiley.

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70.

Download references

Acknowledgments

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Contributions

V.G. initiated the study, analyzed data, wrote the paper; B.V. contributed analytic- and software tools; B.S. computed graph parameters and performed statistical analysis; all authors reviewed the manuscript.

Corresponding author

Correspondence to Vince Grolmusz.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

BS was supported through the new national excellence program of the Ministry of Human Capacities of Hungary.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 192 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szalkai, B., Varga, B. & Grolmusz, V. Brain size bias compensated graph-theoretical parameters are also better in women’s structural connectomes. Brain Imaging and Behavior 12, 663–673 (2018). https://doi.org/10.1007/s11682-017-9720-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9720-0

Keywords

  • Connectome
  • Sex differences