Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 3, pp 615–630 | Cite as

Decreased hemispheric connectivity and decreased intra- and inter- hemisphere asymmetry of resting state functional network connectivity in schizophrenia

  • O. Agcaoglu
  • R. Miller
  • E. Damaraju
  • B. Rashid
  • J. Bustillo
  • M. S. Cetin
  • T. G. M. Van Erp
  • S. McEwen
  • A. Preda
  • J. M. Ford
  • K. O. Lim
  • D. S. Manoach
  • D. H. Mathalon
  • S. G. Potkin
  • V. D. Calhoun
Original Research

Abstract

Many studies have shown that schizophrenia patients have aberrant functional network connectivity (FNC) among brain regions, suggesting schizophrenia manifests with significantly diminished (in majority of the cases) connectivity. Schizophrenia is also associated with a lack of hemispheric lateralization. Hoptman et al. (2012) reported lower inter-hemispheric connectivity in schizophrenia patients compared to controls using voxel-mirrored homotopic connectivity. In this study, we merge these two points of views together using a group independent component analysis (gICA)-based approach to generate hemisphere-specific timecourses and calculate intra-hemisphere and inter-hemisphere FNC on a resting state fMRI dataset consisting of age- and gender-balanced 151 schizophrenia patients and 163 healthy controls. We analyzed the group differences between patients and healthy controls in each type of FNC measures along with age and gender effects. The results reveal that FNC in schizophrenia patients shows less hemispheric asymmetry compared to that of the healthy controls. We also found a decrease in connectivity in all FNC types such as intra-left (L_FNC), intra-right (R_FNC) and inter-hemisphere (Inter_FNC) in the schizophrenia patients relative to healthy controls, but general patterns of connectivity were preserved in patients. Analyses of age and gender effects yielded results similar to those reported in whole brain FNC studies.

Keywords

Functional network connectivity Laterality Schizophrenia Hemisphere Lateral connectivity Heterotopic connectivity Homotopic connectivity 

Notes

Acknowledgments

This work was supported in part by NIH grants P20GM103472 and R01EB020407.

Compliance with ethical standards

Funding

This study was funded in part by NIH grants P20GM103472 and R01EB020407.

Conflict of interest

Author Oktay Agcaoglu, Author Robyn Miller, Author Eswar Damaraju, Author Barnaly Rashid, Author Juan Bustillo, Author Mustafa S. Cetin, Author Theo G.M. Van Erp, Author Sarah McEwen, Author Adrian Prada, Author Judith Ford, Author Dara S. Manoach, Author Kelvin O. Lim, Author Daniel H. Mathalon, Author Steven G. Potkin and Author Vince D. Calhoun declare that they have no conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2017_9718_MOESM1_ESM.docx (1020 kb)
ESM 1 (DOCX 1019 kb)

References

  1. Agcaoglu, O., Miller, R., Mayer, A. R., Hugdahl, K., & Calhoun, V. D. (2014). Lateralization of resting state networks and relationship to age and gender. NeuroImage. doi: 10.1016/j.neuroimage.2014.09.001.PubMedPubMedCentralGoogle Scholar
  2. Agcaoglu, O., Miller, R., Mayer, A. R., Hugdahl, K., & Calhoun, V. D. (2015). Increased spatial granularity of left brain activation and unique age/gender signatures: A 4D frequency domain approach to cerebral lateralization at rest. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9463-8.Google Scholar
  3. Arbabshirani, M. R., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2013). Classification of schizophrenia patients based on resting-state functional network connectivity. Frontiers in Neuroscience, 7, 133. doi: 10.3389/fnins.2013.00133.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Broca, Paul. (1861). Sur le principe des localisations cerebrales. Bulletin de la Societe d"Anthropologie, 2, 190-204.Google Scholar
  5. Cai, Q., Van der Haegen, L., & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 110(4), E322–E330. doi: 10.1073/pnas.1212956110.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.CrossRefPubMedGoogle Scholar
  7. Calhoun, V. D., Kiehl, K. A., & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. doi: 10.1002/hbm.20581.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: A review. Frontiers in Human Neuroscience, 3, 17. doi: 10.3389/neuro.09.017.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cetin, M. S., Christensen, F., Abbott, C. C., Stephen, J. M., Mayer, A. R., Canive, J. M., ... Calhoun, V. D. (2014). Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. Neuroimage, 97, 117-126. Doi: DOI  10.1016/j.neuroimage.2014.04.009
  10. Clements, A. M., Rimrodt, S. L., Abel, J. R., Blankner, J. G., Mostofsky, S. H., Pekar, J. J., et al. (2006). Sex differences in cerebral laterality of language and visuospatial processing. Brain and Language, 98(2), 150–158. doi: 10.1016/j.bandl.2006.04.007.CrossRefPubMedGoogle Scholar
  11. Damaraju, E., Allen, E., & Calhoun, V. D. (2014a). Impact of head motion on ICA-derived functional connectivity measures. MA: Biennial Conference on Resting State / Brain Connectivity Boston.Google Scholar
  12. Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H., et al. (2014b). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage-Clinical, 5, 298–308. doi: 10.1016/j.nicl.2014.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., & Calhoun, V. D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32(12), 2075–2095. doi: 10.1002/hbm.21170.CrossRefPubMedGoogle Scholar
  14. van Erp, T. G., Preda, A., Turner, J. A., Callahan, S., Calhoun, V. D., Bustillo, J. R., et al. (2015). Neuropsychological profile in adult schizophrenia measured with the CMINDS. Psychiatry Research, 230(3), 826–834. doi: 10.1016/j.psychres.2015.10.028.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Freire, L., Roche, A., & Mangin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series? IEEE Transactions on Medical Imaging, 21(5), 470–484. doi: 10.1109/TMI.2002.1009383.CrossRefPubMedGoogle Scholar
  16. Friston, K. (2002). Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience, 25(1), 221–250.CrossRefPubMedGoogle Scholar
  17. Gee, D. G., Biswal, B. B., Kelly, C., Stark, D. E., Margulies, D. S., Shehzad, Z., et al. (2011). Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres. NeuroImage, 54(1), 517–527. doi: 10.1016/j.neuroimage.2010.05.073.CrossRefPubMedGoogle Scholar
  18. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878. doi: 10.1006/nimg.2001.1037.CrossRefPubMedGoogle Scholar
  19. Gobbele, R., Lamberty, K., Stephan, K. E., Stegelmeyer, U., Buchner, H., Marshall, J. C., et al. (2008). Temporal activation patterns of lateralized cognitive and task control processes in the human brain. Brain Research, 1205, 81–90. doi: 10.1016/j.brainres.2008.02.031.CrossRefPubMedGoogle Scholar
  20. Gotts, S. J., Jo, H. J., Wallace, G. L., Saad, Z. S., Cox, R. W., & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(36), E3435–E3444. doi: 10.1073/pnas.1302581110.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C. M. P., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects. Schizophrenia Bulletin, 39(5), 1129–1138. doi;  10.1093/schbul/sbs118
  22. Hoptman, M. J., Zuo, X. N., D'Angelo, D., Mauro, C. J., Butler, P. D., Milham, M. P., & Javitt, D. C. (2012). Decreased interhemispheric coordination in schizophrenia: A resting state fMRI study. Schizophrenia Research, 141(1), 1–7. doi: 10.1016/j.schres.2012.07.027.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage, 39(4), 1666–1681. doi: 10.1016/j.neuroimage.2007.11.001.CrossRefPubMedGoogle Scholar
  24. Ke, M., Zou, R., Shen, H., Huang, X., Zhou, Z., Liu, Z., et al. (2010). Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Research, 182(1), 30–39. doi: 10.1016/j.pscychresns.2009.11.004.CrossRefPubMedGoogle Scholar
  25. Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., et al. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30. doi: 10.1016/j.jpsychires.2005.05.005.CrossRefPubMedGoogle Scholar
  26. Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20499–20503. doi: 10.1073/pnas.0908073106.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30(28), 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miyata, J., Sasamoto, A., Koelkebeck, K., Hirao, K., Ueda, K., Kawada, R., et al. (2012). Abnormal asymmetry of white matter integrity in schizophrenia revealed by voxelwise diffusion tensor imaging. Human Brain Mapping, 33(7), 1741–1749. doi: 10.1002/hbm.21326.CrossRefPubMedGoogle Scholar
  29. Mohamed, S., Paulsen, J. S., O'Leary, D., Arndt, S., & Andreasen, N. (1999). Generalized cognitive deficits in schizophrenia: A study of first-episode patients. Archives of General Psychiatry, 56(8), 749–754.CrossRefPubMedGoogle Scholar
  30. Mwansisya, T. E., Wang, Z., Tao, H., Zhang, H., Hu, A., Guo, S., & Liu, Z. (2013). The diminished interhemispheric connectivity correlates with negative symptoms and cognitive impairment in first-episode schizophrenia. Schizophrenia Research, 150(1), 144–150. doi: 10.1016/j.schres.2013.07.018.CrossRefPubMedGoogle Scholar
  31. Nielsen, J. A., Zielinski, B. A., Ferguson, M. A., Lainhart, J. E., & Anderson, J. S. (2013). An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One, 8(8), e71275. doi:  10.1371/journal.pone.0071275
  32. Oertel-Knochel, V., Knochel, C., Matura, S., Prvulovic, D., Linden, D. E., & van de Ven, V. (2013). Reduced functional connectivity and asymmetry of the planum temporale in patients with schizophrenia and first-degree relatives. Schizophrenia Research, 147(2–3), 331–338. doi: 10.1016/j.schres.2013.04.024.CrossRefPubMedGoogle Scholar
  33. Ribolsi, M., Daskalakis, Z. J., Siracusano, A., & Koch, G. (2014). Abnormal asymmetry of brain connectivity in schizophrenia. Frontiers in Human Neuroscience, 8, 1010. doi: 10.3389/fnhum.2014.01010.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Richard A.A. Kanaan, Jin-Suh Kim, Walter E. Kaufmann, Godfrey D. Pearlson, Gareth J. Barker, Philip K. McGuire, Diffusion Tensor Imaging in Schizophrenia, Biological Psychiatry, Volume 58, Issue 12, 15 December 2005, Pages 921-929, ISSN 0006-3223, doi :  10.1016/j.biopsych.2005.05.015
  35. Rotarska-Jagiela, A., Schonmeyer, R., Oertel, V., Haenschel, C., Vogeley, K., & Linden, D. E. (2008). The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. NeuroImage, 39(4), 1522–1532. doi: 10.1016/j.neuroimage.2007.10.063.CrossRefPubMedGoogle Scholar
  36. Stark, D. E., Margulies, D. S., Shehzad, Z. E., Reiss, P., Kelly, A. M., Uddin, L. Q., et al. (2008). Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. The Journal of Neuroscience, 28(51), 13754–13764. doi: 10.1523/JNEUROSCI.4544-08.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Swanson, N., Eichele, T., Pearlson, G., Kiehl, K., Yu, Q., & Calhoun, V. D. (2011). Lateral differences in the default mode network in healthy controls and patients with schizophrenia. Human Brain Mapping, 32(4), 654–664. doi: 10.1002/hbm.21055.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tang, C., Zhao, Z., Chen, C., Zheng, X., Sun, F., Zhang, X., et al. (2016). Decreased functional connectivity of homotopic brain regions in chronic stroke patients: A resting state fMRI study. PloS One, 11(4), e0152875. doi: 10.1371/journal.pone.0152875.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wernicke, C. (1874). Der aphasische Symptomencomplex. In Eine psychologische Studie auf anatomischer Basis. Breslau: M. Crohn und Weigert.Google Scholar
  40. Yu, Q., Allen, E. A., Sui, J., Arbabshirani, M. R., Pearlson, G., & Calhoun, V. D. (2012). Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Current Topics in Medicinal Chemistry, 12(21), 2415–2425.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhu, L., Fan, Y., Zou, Q., Wang, J., Gao, J. H., & Niu, Z. (2014). Temporal reliability and lateralization of the resting-state language network. PloS One, 9(1), e85880. doi: 10.1371/journal.pone.0085880.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zuo, X. N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru, S., et al. (2010). Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy. The Journal of Neuroscience, 30(45), 15034–15043. doi: 10.1523/JNEUROSCI.2612-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • O. Agcaoglu
    • 1
    • 2
  • R. Miller
    • 1
  • E. Damaraju
    • 1
    • 2
  • B. Rashid
    • 1
    • 2
  • J. Bustillo
    • 3
  • M. S. Cetin
    • 1
    • 4
  • T. G. M. Van Erp
    • 5
  • S. McEwen
    • 6
  • A. Preda
    • 5
  • J. M. Ford
    • 7
    • 8
  • K. O. Lim
    • 9
  • D. S. Manoach
    • 10
    • 11
  • D. H. Mathalon
    • 7
  • S. G. Potkin
    • 5
  • V. D. Calhoun
    • 1
    • 2
    • 3
    • 4
  1. 1.Mind Research NetworkAlbuquerqueUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Psychiatry and Behavioral SciencesUniversity of New MexicoAlbuquerqueUSA
  4. 4.Computer Science DepartmentUniversity of New MexicoAlbuquerqueUSA
  5. 5.Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineUSA
  6. 6.Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesUSA
  7. 7.Department of PsychiatryUniversity of California San FranciscoSan FranciscoUSA
  8. 8.San Francisco Veterans Affairs Medical CenterSan FranciscoUSA
  9. 9.Department of PsychiatryUniversity of MinnesotaMinneapolisUSA
  10. 10.Department of PsychiatryMassachusetts General HospitalCharlestownUSA
  11. 11.Harvard Medical SchoolBostonUSA

Personalised recommendations