Skip to main content

Emotional intelligence moderates the relationship between regional gray matter volume in the bilateral temporal pole and critical thinking disposition

Abstract

Critical thinking enables people to form sound beliefs and provides a basis for emotional life. Research has indicated that individuals with better critical thinking disposition can better recognize and regulate their emotions, though the neuroanatomical mechanisms involved in this process remain to be elucidated. Further, the influence of emotional intelligence on the relationship between brain structure and critical thinking disposition has not been examined. The present study utilized voxel-based morphometry (VBM) to investigate the neural structures underlying critical thinking disposition in a large sample of college students (N = 296). Regional gray matter volume (rGMV) in the bilateral temporal pole, which reflects an individual’s ability to process social and emotional information, was negatively correlated with critical thinking disposition. In addition, rGMV in bilateral para hippocampal regions —regions involved in contextual association/emotional regulation—exhibited negative correlation with critical thinking disposition. Further analysis revealed that emotional intelligence moderated the relationship between rGMV of the temporal pole and critical thinking disposition. Specifically, critical thinking disposition was associated with decreased GMV of the temporal pole for individuals who have relatively higher emotional intelligence rather than lower emotional intelligence. The results of the present study indicate that people who have higher emotional intelligence exhibit more effective and automatic processing of emotional information and tend to be strong critical thinkers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Afshar, H. S., & Rahimi, M. (2016). Reflective thinking, emotional intelligence, and speaking ability of EFL learners: IS there a relation? Thinking Skills and Creativity, 19, 97–111.

    Article  Google Scholar 

  • Agroskin, D., Klackl, J., & Jonas, E. (2014). The self-liking brain: a VBM study on the structural substrate of self-esteem. PloS One, 9(1), 1–8.

  • Aichelburg, C., Urbanski, M., de Schotten, M. T., Humbert, F., Levy, R., & Volle, E. (2016). Morphometry of left frontal and temporal poles predicts analogical reasoning abilities. Cerebral Cortex, 26(3), 915–932.

    Article  PubMed  Google Scholar 

  • Aminoff, E., Gronau, N., & Bar, M. (2007). The parahippocampal cortex mediates spatial and nonspatial associations. Cerebral Cortex, 17(7), 1493–1503.

    CAS  Article  PubMed  Google Scholar 

  • Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379–390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atay, S., & Karabacak, Ü. (2012). Care plans using concept maps and their effects on the critical thinking dispositions of nursing students. International Journal of Nursing Practice, 18(3), 233–239.

    Article  PubMed  Google Scholar 

  • Bergfield, K. L., Hanson, K. D., Chen, K., Teipel, S. J., Hampel, H., Rapoport, S. I., et al. (2010). Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. NeuroImage, 49(2), 1750–1759.

    Article  PubMed  Google Scholar 

  • Bora, F. D. (2012). The impact of emotional intelligence on developing speaking skills: from brain-based perspective. Procedia - Social and Behavioral Sciences, 46, 2094–2098.

    Article  Google Scholar 

  • Chadwick, M. J., Anjum, R. S., Kumaran, D., Schacter, D. L., Spiers, H. J., Hassabis, D. (2016). Semantic representations in the temporal pole predict false memories. Proceedings of the National Academy of Sciences, 1–6.

  • Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., et al. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. NeuroImage, 102, 474–483.

    Article  PubMed  Google Scholar 

  • Dupont, S. (2002). Investigating temporal pole function by functional imaging. Epileptic Disorders, 4(1), 17–22.

    Google Scholar 

  • Elder, L. (1997). Critical thinking: the key to emotional intelligence. Journal of Developmental Education, 21(1), 40.

    Google Scholar 

  • Ennis, R. (1992). Critical thinking: what is it? Paper presented at the Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society Denver.

  • Ennis, R. H. (2008). Nationwide testing of critical thinking for higher education. Teaching Philosophy, 31(1), 1–26.

    Article  Google Scholar 

  • Facione, P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research Findings and Recommendations, California Academic Press.

  • Facione, P. A., Facione, N. C., & Giancarlo, C. A. F. (1996). The motivation to think in working and learning. New directions for higher education, 96, 67–79.

  • Facione, P. A. (2007). Critical thinking: what it is and why it counts. Insight Assessment, 2007, 1–23.

    Google Scholar 

  • Facione, N. C., Facione, P. A., & Sanchez, C. A. (1994). Critical thinking disposition as a measure of competent clinical judgment: the development of the California critical thinking disposition inventory. Journal of Nursing Education, 33(8), 345–350.

    CAS  PubMed  Google Scholar 

  • Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10(5), 151–155.

  • Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 459–473.

  • Ghanizadeh, A., & Moafian, F. (2011). Critical thinking and emotional intelligence: investigating the relationship among EFL learners and the contribution of age and gender. Iranian Journal of Applied Linguistics (IJAL), 14(1), 23–48.

    Google Scholar 

  • Glosser, G., Zwil, A. S., Glosser, D. S., O'Connor, M. J., & Sperling, M. R. (2000). Psychiatric aspects of temporal lobe epilepsy before and after anterior temporal lobectomy. Journal of Neurology, Neurosurgery & Psychiatry, 68(1), 53–58.

    CAS  Article  Google Scholar 

  • Goh, S., Bansal, R., Xu, D., Hao, X., Liu, J., & Peterson, B. S. (2011). Neuroanatomical correlates of intellectual ability across the life span. Developmental Cognitive Neuroscience, 1(3), 305–312.

    Article  PubMed  Google Scholar 

  • Grabowski, T. J., Damasio, H., Tranel, D., Ponto, L. L. B., Hichwa, R. D., & Damasio, A. R. (2001). A role for left temporal pole in the retrieval of words for unique entities. Human Brain Mapping, 13(4), 199–212.

    CAS  Article  PubMed  Google Scholar 

  • Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. The Journal of Neuroscience, 24(24), 5500–5505.

    Article  PubMed  Google Scholar 

  • Gupta, K., Iranfar, S., Iranfar, K., Mehraban, B., & Montazeri, N. (2012). Validly and reliability of California critical thinking disposition inventory (CCTDI) in Kermanshah University of Medical Sciences. Educational Research in Medical Sciences Journal, 1(1), 6–10.

  • Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41(3), 924–936.

    Article  PubMed  Google Scholar 

  • Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H., & Villringer, A. (2003). An fMRI study of simple ethical decision-making. Neuroreport, 14(9), 1215–1219.

    Article  PubMed  Google Scholar 

  • Huang, Y., Lu, A., Wang, L., Shi, J. (2008). Validation of the emotional intelligence scale. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 970–976.

  • Jaušovec, N., & Jaušovec, K. (2005). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56(3), 223–235.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., Jaušovec, K., & Gerlič, I. (2001). Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neuroscience Letters, 311(2), 93–96.

    Article  PubMed  Google Scholar 

  • Jeong, H. (2015). Critical thinking disposition, problem solving process, and empathy among nursing students. Advanced Science and Technology Letters, 103, 44–48.

    Article  Google Scholar 

  • Jimura, K., Konishi, S., Asari, T., & Miyashita, Y. (2010a). Temporal pole activity during understanding other persons' mental states correlates with neuroticism trait. Brain Research, 1328, 104–112.

    CAS  Article  PubMed  Google Scholar 

  • Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242.

    CAS  Article  PubMed  Google Scholar 

  • Lai, E. R. (2011). Critical thinking: a literature review. Pearson's Research Reports, 6, 40–41.

    Google Scholar 

  • Leung, M., Chan, C. C., Yin, J., Lee, C., So, K., Lee, T. M. (2013). Increased gray matter volume in the right angular and posterior parahippocampalgyri in loving-kindness meditators. Social Cognitive and Affective Neuroscience, 8, 34–39.

  • Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., et al. (2014). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 1–8.

  • Mahmoud, H. G. (2012). Critical thinking dispositions and learning styles of baccalaureate nursing students and its relation to their achievement. International Journal of Learning and Development, 2(1), 398–415.

    Article  Google Scholar 

  • Mathiak, K. A., Klasen, M., Weber, R., Ackermann, H., Shergill, S. S., & Mathiak, K. (2011). Reward system and temporal pole contributions to affective evaluation during a first person shooter video game. BMC Neuroscience, 12(1), 1–11.

  • Mayer, J. D., Roberts, R. D., & Barsade, S. G. (2008). Human abilities: emotional intelligence. Annual Review of Psychology, 59, 507–536.

    Article  PubMed  Google Scholar 

  • Mayor, J., Salovey, P., & Caruso, D. R. (2004). Emotional intelligence: theory, findings and implications. Psychological Inquiry, 15(3), 197–215.

    Article  Google Scholar 

  • McBride, R. E., Xiang, P., & Wittenburg, D. (2002). Dispositions toward critical thinking: the preservice teacher's perspective. Teachers and Teaching: Theory and Practice, 8(1), 29–40.

    Article  Google Scholar 

  • McPherson, K. (1983) Opinion-Related Information Seeking. Personality and Social Psychology Bulletin, 9(1), 116–124.

  • Meici, P., Guocheng, W., Jile, C. (2004). School of nursing, the Hong Kong Polytechnic University, Hong Kong, SAR, PR China; validity and reliability of the chinese critical thinking disposition inventory. Chinese Journal of Nursing, 9, 644–647.

  • Moon, J. (2007). Critical thinking: an exploration of theory and practice. Routledge.

  • Moriguchi, Y., Ohnishi, T., Lane, R. D., Maeda, M., Mori, T., Nemoto, K., et al. (2006). Impaired self-awareness and theory of mind: an fMRI study of mentalizing in alexithymia. NeuroImage, 32(3), 1472–1482.

    Article  PubMed  Google Scholar 

  • Murai, T., & Fujimoto, S. (2003). Rapid cycling bipolar disorder after left temporal polar damage. Brain Injury, 17(4), 355–358.

    Article  PubMed  Google Scholar 

  • Murensky, C. L. (2000). The relationships between emotional intelligence, personality, critical thinking ability and organizational leadership performance at upper levels of management. ProQuest Information & Learning.

  • Nikolova, Y. S., Bogdan, R., Brigidi, B. D., & Hariri, A. R. (2012). Ventral striatum reactivity to reward and recent life stress interact to predict positive affect. Biological Psychiatry, 72(2), 157–163.

    Article  PubMed  Google Scholar 

  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: a review of findings on social and emotional processing. Brain, 130(7), 1718–1731.

    Article  PubMed  Google Scholar 

  • Pascual, B., Masdeu, J. C., Hollenbeck, M., Makris, N., Insausti, R., Ding, S., et al. (2015). Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cerebral Cortex, 25(3), 680–702.

    Article  PubMed  Google Scholar 

  • Paul, R., & Elder, L. (2013). Critical thinking: tools for taking charge of your professional and personal life. Pearson Education.

    Google Scholar 

  • Paus, T. (2005) Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.

  • Pehrs, C., Zaki, J., Schlochtermeier, L. H., Jacobs, A. M., Kuchinke, L., Koelsch, S. (2017). The temporal pole top-down modulates the ventral visual stream during social cognition. Cerebral Cortex, 27(1), 777–792.

  • Perkins, D. N., Jay, E., & Tishman, S. (1993). Beyond abilities: A dispositional theory of thinking. Merrill-Palmer Quarterly, 39, 1–21.

    Google Scholar 

  • Prince, S. E., Tsukiura, T., & Cabeza, R. (2007). Distinguishing the neural correlates of episodic memory encoding and semantic memory retrieval. Psychological Science, 18(2), 144–151.

    Article  PubMed  Google Scholar 

  • Qin, S., Duan, X., Supekar, K., Chen, H., Chen, T., & Menon, V. (2015). Large-scale intrinsic functional network organization along the long axis of the human medial temporal lobe. Brain Structure and Function, 1–22.

  • Ridgway, G. R., Henley, S. M., Rohrer, J. D., Scahill, R. I., Warren, J. D., & Fox, N. C. (2008). Ten simple rules for reporting voxel-based morphometry studies. NeuroImage, 40(4), 1429–1435.

    Article  PubMed  Google Scholar 

  • Salovey, P., Mayer, J. D., Goldman, S. L., Turvey, C., & Palfai, T. P. (1995). Emotional attention, clarity, and repair: exploring emotional intelligence using the trait meta-mood scale. Emotion, Disclosure, and Health, 125, 154.

    Google Scholar 

  • Sanjuán, A., Hope, T. M., Jones, Ō. P., Prejawa, S., Oberhuber, M., Guerin, J., et al. (2015). Dissociating the semantic function of two neighbouringsubregions in the left lateral anterior temporal lobe. Neuropsychologia, 76, 153–162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena, S., & Singhvi, M. (2015). A study of relationship between emotional intelligence and reasoning ability among college students, 2(4), 180–184.

  • Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9(1), 7–24.

    CAS  Article  PubMed  Google Scholar 

  • Schutte, N. S., Malouff, J. M., Hall, L. E., Haggerty, D. J., Cooper, J. T., Golden, C. J., et al. (1998). Development and validation of a measure of emotional intelligence. Personality and Individual Differences, 25(2), 167–177.

    Article  Google Scholar 

  • Stapleton, P. (2011). A survey of attitudes towards critical thinking among Hong Kong secondary school teachers: implications for policy change. Thinking Skills and Creativity, 6(1), 14–23.

    Article  Google Scholar 

  • Stedman, N. L., & Andenoro, A. C. (2007). Identification of relationships between emotional intelligence skill and critical thinking disposition in undergraduate leadership students. Journal of Leadership Education, 6(1), 190–208.

    Article  Google Scholar 

  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., et al. (2011). Failing to deactivate: the association between brain activity during a working memory task and creativity. NeuroImage, 55(2), 681–687.

    Article  PubMed  Google Scholar 

  • Tan, Y., Zhang, Q., Li, W., Wei, D., Qiao, L., Qiu, J., et al. (2014). The correlation between emotional intelligence and gray matter volume in university students. Brain and Cognition, 91, 100–107.

    Article  PubMed  Google Scholar 

  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Van Strien, N. M., Cappaert, N., & Witter, M. P. (2009). The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nature Reviews Neuroscience, 10(4), 272–282.

    CAS  Article  PubMed  Google Scholar 

  • Wang, D. (2007). A report on the third revision of combined raven's test (CRT-C3) for children in China. Chinese Journal of Clinical Psychology, 15(6), 559.

    Google Scholar 

  • Wang, S., & Morris, R. G. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 49–79.

    Article  PubMed  Google Scholar 

  • Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.

    Article  PubMed  Google Scholar 

  • Wei, D., Du, X., Li, W., Chen, Q., Li, H., Hao, X., et al. (2015). Regional gray matter volume and anxiety-related traits interact to predict somatic complaints in a non-clinical sample. Social Cognitive and Affective Neuroscience, 10(1), 122–128.

    Article  PubMed  Google Scholar 

  • Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study. PloS One, 8(11), e79272.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31271087; 31470981; 31571137; 31500885), National Outstanding young people plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1509383,SWU1509451), Natural Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation (151023), General Financial Grant from the China Postdoctoral Science Foundation (2015 M572423, 2015 M580767), Special Funds from the Chongqing Postdoctoral Science Foundation (Xm2015037), Key research for Humanities and social sciences of Ministry of Education(14JJD880009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Qiu or Dong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Yuan, S., Yang, W. et al. Emotional intelligence moderates the relationship between regional gray matter volume in the bilateral temporal pole and critical thinking disposition. Brain Imaging and Behavior 12, 488–498 (2018). https://doi.org/10.1007/s11682-017-9701-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9701-3

Keywords

  • Emotional intelligence
  • Gray matter volume
  • Critical thinking
  • Temporal pole
  • Voxel-based morphometry