Brain Imaging and Behavior

, Volume 12, Issue 2, pp 324–334 | Cite as

Changes in brain white matter integrity after systemic treatment for breast cancer: a prospective longitudinal study

  • Sanne Menning
  • Michiel B. de Ruiter
  • Dick J. Veltman
  • Willem Boogerd
  • Hester S. A. Oldenburg
  • Liesbeth Reneman
  • Sanne B. Schagen
Original Research


An increasing number of studies suggest chemotherapy for breast cancer may be neurotoxic. Cross-sectional MRI diffusion tensor imaging (DTI) studies suggest a vulnerability of brain white matter to various chemotherapeutic regimens. Up till now, this was confirmed in one prospective DTI study: Deprez et al. (2012) showed a widespread decline in fractional anisotropy (FA) of breast cancer patients after chemotherapy consisting of 5-fluorouracil (5-FU), epirubicin and cyclophosphamide (FEC) +/− taxanes +/− endocrine treatment. Our aim was to evaluate whether similar detrimental effects on white matter integrity would be observed with the currently widely prescribed anthracycline-based chemotherapy for breast cancer (predominantly doxorubicin and cyclophosphamide +/− taxanes +/− endocrine treatment (=BC + SYST; n = 26) compared to no systemic treatment (BC; n = 23) and no-cancer controls (NC; n = 30). Assessment took place before and six months after chemotherapy, and matched intervals for the unexposed groups. DTI data were analyzed using voxel-based tract-based spatial statistics and region of interest (ROI) analysis. Voxel-based analysis did not show an effect of chemotherapy +/− endocrine treatment on white matter integrity. ROI analysis however indicated subtle detrimental effects of chemotherapy +/− endocrine treatment by showing a larger decline in WM integrity in the superior longitudinal fasciculus and corticospinal tract in BC + SYST than BC. Indications for relatively mild neurotoxicity in our study might be explained by patient characteristics and specific aspects of data analysis. The omission of 5-FU in current treatment regimens or the administration of doxorubicin instead of epirubicin is also discussed as an explanation for the observed effects.


Breast cancer Chemotherapy Cognition Neurotoxicity Diffusion tensor imaging (DTI) White matter Side effects CRCI Cancer related cognitive impairment 



This study was funded by the Dutch Cancer Society (KWF 2009-4284). We thank Epie Boven, MD, PhD, Suzan van der Meij, MD, Vera Lustig, MD, and Monique Bos, MD, PhD, for their contributions to the patient recruitment. We are indebted to all patients and controls, as well as physicians and nurses of the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, VU University Medical Center, Flevoziekenhuis, Reinier de Graaf Gasthuis and Academic Medical Center, for providing patients for this study and the research assistants for helping collecting the data.

Compliance with ethical standards


This study was funded by the Dutch Cancer Society (grant number KWF 2009–4284).

Conflict of interest

Author Menning declares that she has no conflict of interest. Author de Ruiter declares that he has no conflict of interest. Author Veltman declares that he has no conflict of interest. Author Boogerd declares that he has no conflict of interest. Author Oldenburg declares that she has no conflict of interest. Author Reneman declares that she has no conflict of interest. Author Schagen declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85, 365–376. doi: 10.1093/jnci/85.5.365.CrossRefPubMedGoogle Scholar
  2. Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemiuex, S., & Kuwabara, H. (2008a). Adjuvant chemotherapy for breast cancer: Effects on cerebral white matter seen in diffusion tensor imaging. Clinical Breast Cancer, 8(1), 88–91. doi: 10.3816/CBC.2008.n.007.CrossRefPubMedGoogle Scholar
  3. Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemiuex, S., & Kuwabara, H. (2008b). Adjuvant chemotherapy for breast cancer: Effects on cerebral white matter seen in diffusion tensor imaging. Clinical Breast Cancer, 8(1), 88–91.CrossRefPubMedGoogle Scholar
  4. Akitake, R., Miyamoto, S., Nakamura, F., Horimatsu, T., Ezoe, Y., Muto, M., & Chiba, T. (2011). Early detection of 5-FU-induced acute leukoencephalopathy on diffusion-weighted MRI. Japanese Journal of Clinical Oncology, 41(1), 121–124. doi: 10.1093/jjco/hyq157.CrossRefPubMedGoogle Scholar
  5. Alpherts, W., Aldenkamp, A. P. (1994). FePsy: The iron psyche. Heemstede.Google Scholar
  6. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. Journal of molecular neuroscience : MN, 34(1), 51–61. doi: 10.1007/s12031-007-0029-0.CrossRefPubMedGoogle Scholar
  7. Bach, M., Laun, F. B., Leemans, A., Tax, C. M. W., Biessels, G. J., Stieltjes, B., & Maier-Hein, K. H. (2014). Methodological considerations on tract-based spatial statistics (TBSS). NeuroImage, 100, 358–369. doi: 10.1016/j.neuroimage.2014.06.021.CrossRefPubMedGoogle Scholar
  8. Barrick, T. R., Charlton, R. A., Clark, C. A., & Markus, H. S. (2010). White matter structural decline in normal ageing: A prospective longitudinal study using tract-based spatial statistics. NeuroImage, 51(2), 565–577. doi: 10.1016/j.neuroimage.2010.02.033.CrossRefPubMedGoogle Scholar
  9. Benedict, R. H. B., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins verbal learning test – Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12, 43–55. doi: 10.1076/clin. Scholar
  10. Briones, T. L., & Woods, J. (2014). Dysregulation in myelination mediated by persistent neuroinflammation: Possible mechanisms in chemotherapy-related cognitive impairment. Brain, Behavior, and Immunity, 35, 23–32. doi: 10.1016/j.bbi.2013.07.175.CrossRefPubMedGoogle Scholar
  11. Cheung, Y. T., Lim, S. R., Ho, H. K., & Chan, A. (2013). Cytokines as mediators of chemotherapy-associated cognitive changes: Current evidence, limitations and directions for future research. PloS One, 8(12). doi: 10.1371/journal.pone.0081234.
  12. Choi, S. M., Lee, S. H., Yang, Y. S., Kim, B. C., Kim, M. K., & Cho, K. H. (2001). 5-fluorouracil-induced leukoencephalopathy in patients with breast cancer. Journal of Korean Medical Science. doi: 10.3346/jkms.2001.16.3.328.Google Scholar
  13. Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396.CrossRefPubMedGoogle Scholar
  14. De Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., et al. (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33(12), 2971–2983. doi: 10.1002/hbm.21422.CrossRefPubMedGoogle Scholar
  15. Dekkers, A. M. M., Olff, M., & Näring, G. W. B. (2010). Identifying persons at risk for PTSD after trauma with TSQ in the Netherlands. Community Mental Health Journal, 46(1), 20–25. doi: 10.1007/s10597-009-9195-6.CrossRefPubMedGoogle Scholar
  16. Deprez, S., Amant, F., Yigit, R., Porke, K., Verhoeven, J., Van den Stock, J., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480–493. doi: 10.1002/hbm.21033.CrossRefPubMedGoogle Scholar
  17. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274–281. doi: 10.1200/JCO.2011.36.8571.
  18. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. doi: 10.3758/BF03203267.Google Scholar
  19. Fan, Y., Lin, K., Liu, H., Chen, Y., & Wu, C. (2015). Changes in structural integrity are correlated with motor and functional recovery after post-stroke rehabilitation. Restorative Neurology and Neuroscience, 33(6), 835–844. doi: 10.3233/RNN-150523.CrossRefPubMedGoogle Scholar
  20. Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A. (1987). MR signal abnormalities at 1. 5 T in Alzheimer ’ s dementia and normal aging deficiency. AJNR. American Journal of Neuroradiology, 149(August), 351–356. doi: 10.2214/ajr.149.2.351.Google Scholar
  21. Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the big-five personality domains. Journal of Research in Personality, 37, 504–528. doi: 10.1016/S0092-6566(03)00046-1.CrossRefGoogle Scholar
  22. Han, R., Yang, Y. M., Dietrich, J., Luebke, A., Mayer-Pröschel, M., & Noble, M. (2008). Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. Journal of Biology, 7(4), 12. doi: 10.1186/jbiol69.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hesbacher, P. T., Rickels, K., Morris, R. J., Newman, H., & Rosenfeld, H. (1980). Psychiatric illness in family practice. The Journal of Clinical Psychiatry, 41(1), 6–10.PubMedGoogle Scholar
  24. Israel, Z. H., Lossos, A., Barak, V., Soffer, D., & Siegal, T. (2000). Multifocal demyelinative leukoencephalopathy associated with 5-fluorouracil and levamisole. Acta Oncologica, 39(1), 117–120.Google Scholar
  25. Khasraw, M., Bell, R., & Dang, C. (2012). Epirubicin: Is it like doxorubicin in breast cancer? A clinical review. Breast, 21(2), 142–149. doi: 10.1016/j.breast.2011.12.012.CrossRefPubMedGoogle Scholar
  26. Koppelmans, V., de Groot, M., de Ruiter, M. B., Boogerd, W., Seynaeve, C., Vernooij, M. W., et al. (2014). Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Human Brain Mapping, 35(3), 889–899. doi: 10.1002/hbm.22221.CrossRefPubMedGoogle Scholar
  27. Mangin, J.-F., Poupon, C., Clark, C., Le Bihan, D., & Bloch, I. (2002). Distortion correction and robust tensor estimation for MR diffusion imaging. Medical Image Analysis, 6(3), 191–198.CrossRefPubMedGoogle Scholar
  28. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: A prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819–828. doi: 10.1007/s10549-010-1088-4.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Menning, S., de Ruiter, M., Veltman, D., Koppelmans, V., Kirschbaum, C., Boogerd, W., et al. (2015). Multimodal MRI and cognitive function in patients with breast cancer prior to adjuvant treatment - the role of fatigue. NeuroImage: Clinical, 7, 547–554.CrossRefGoogle Scholar
  30. Menning, S., de Ruiter, M. B., & Kieffer, J. M. Agelink van Rentergem, J., Veltman, D. J., Fruijtier, A., et al. (2016). Cognitive Impairment in a Subset of Breast Cancer Patients After Systemic Therapy - Results From a Longitudinal Study. Journal of Pain and Symptom Management, 52(4), 560–569.e1. doi: 10.1016/j.jpainsymman.2016.04.012.
  31. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25.CrossRefPubMedGoogle Scholar
  32. Pfefferbaum, A., Rosenbloom, M. J., Chu, W., Sassoon, S. A., Rohlfing, T., Pohl, K. M., et al. (2014). White matter microstructural recovery with abstinence and decline with relapse in alcohol dependence interacts with normal ageing: A controlled longitudinal DTI study. The Lancet. Psychiatry, 1(3), 202–212. doi: 10.1016/S2215-0366(14)70301-3.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906. doi: 10.1002/mrm.1910360612.CrossRefPubMedGoogle Scholar
  34. Pomykala, K. L., de Ruiter, M. B., Deprez, S., McDonald, B. C., & Silverman, D. H. S. (2013). Integrating imaging findings in evaluating the post-chemotherapy brain. Brain Imaging and Behavior, 7(4), 436–452. doi: 10.1007/s11682-013-9239-y.CrossRefPubMedGoogle Scholar
  35. Schilder, C. M., Seynaeve, C., Beex, L. V., Boogerd, W., Linn, S. C., Gundy, C. M., et al. (2010a). Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: Results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. Journal of Clinical Oncology, 28(8), 1294–1300. doi: 10.1200/JCO.2008.21.3553.CrossRefPubMedGoogle Scholar
  36. Schilder, C. M. T., Seynaeve, C., Linn, S. C., Boogerd, W., Beex, LVAM., Gundy, C. M., et al. (2010b). Cognitive functioning of postmenopausal breast cancer patients before adjuvant systemic therapy, and its association with medical and psychological factors. Critical Reviews in Oncology/Hematology, 76(2), 133–141. doi: 10.1016/j.critrevonc.2009.11.001
  37. Schmand, B., Lindeboom, J., & van Harskamp, F. (1992). De Nederlandse Leestest Voor Volwassenen. Lisse: Swets & Zeitlinger.Google Scholar
  38. Schwarz, C. G., Reid, R. I., Gunter, J. L., Senjem, M. L., Przybelski, S. A., Zuk, S. M., et al. (2014). Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. NeuroImage, 94, 65–78. doi: 10.1016/j.neuroimage.2014.03.026.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Seigers, R., Loos, M., Van Tellingen, O., Boogerd, W., Smit, A. B., & Schagen, S. B. (2015). Cognitive impact of cytotoxic agents in mice. Psychopharmacology, 232(1), 17–37. doi: 10.1007/s00213-014-3636-9.CrossRefPubMedGoogle Scholar
  40. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. doi: 10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
  41. Stewart, A. L., Ware, J. E., Sherbourne, C. D., & Wells, K. B. (1992). Psychological distress/well-being and cognitive functioning measures. In A. L. Stewart & J. E. Ware (Eds.), Measuring functioning and well-being: The medical outcomes study approach (pp. 102–142). Durham, NC: Duke University Press.CrossRefGoogle Scholar
  42. Stouten-Kemperman, M. M., de Ruiter, M. B., Koppelmans, V., Boogerd, W., Reneman, L., & Schagen, S. B. (2014). Neurotoxicity in breast cancer survivors ≥10 years post-treatment is dependent on treatment type. Brain Imaging and Behavior, 275–284. doi: 10.1007/s11682-014-9305-0.
  43. Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2010). Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Developmental Neuropsychology, 35(3), 233–256. doi: 10.1080/87565641003689556.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wald, F. D. M., & Mellenbergh, G. J. (1990). De verkorte versie van de Nederlandse vertaling van de Profile of Mood States (POMS). Nederlands Tijdschrift voor de Psychologie, 45, 86–90.Google Scholar
  45. Wechsler, D. (2000). WAIS-III Nederlandstalige bewerking. Technische Handleiding. Lisse: Swets & Zeitlinger.Google Scholar
  46. Wefel, J. S., Kesler, S. R., Noll, K. R., & Schagen, S. B. (2015). Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA: A Cancer Journal for Clinicians, 65(2), 123–138. doi: 10.3322/caac.21258.Google Scholar
  47. Weiss, D., & Marmar, C. (1997). The impact of event scale - revised. In J. Wilson & T. Keane (Eds.), Assessing psychological trauma and PTSD (pp. 399–411). New York: Guilford Press.Google Scholar
  48. Weng, Q., Tan, B., Wang, J., Wang, J., Zhou, H., Shi, J., et al. (2014). 5-fluorouracil causes severe CNS demyelination by disruption of TCF7L2/HDAC1/HDAC2 complex in adolescent mice. Toxicology, 325, 144–150. doi: 10.1016/j.tox.2014.08.011.CrossRefPubMedGoogle Scholar
  49. Winocur, G., Vardy, J., Binns, M. A., Kerr, L., & Tannock, I. (2006). The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacology Biochemistry and Behavior, 85(1), 66–75. doi: 10.1016/j.pbb.2006.07.010.CrossRefGoogle Scholar
  50. Zwart, W., Terra, H., Linn, S. C., & Schagen, S. B. (2015). Cognitive effects of endocrine therapy for breast cancer: Keep calm and carry on? Nature reviews. Clinical Oncology, 12(10), 597–606. doi: 10.1038/nrclinonc.2015.124.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sanne Menning
    • 1
    • 2
  • Michiel B. de Ruiter
    • 1
    • 2
  • Dick J. Veltman
    • 3
  • Willem Boogerd
    • 4
  • Hester S. A. Oldenburg
    • 5
  • Liesbeth Reneman
    • 2
  • Sanne B. Schagen
    • 1
  1. 1.Division of Psychosocial Research and EpidemiologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Radiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands
  4. 4.Department of Neuro-OncologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  5. 5.Department of Surgical OncologyNetherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations