Brain Imaging and Behavior

, Volume 12, Issue 1, pp 247–257 | Cite as

The effects of GRIN2B and DRD4 gene variants on local functional connectivity in attention-deficit/hyperactivity disorder

Original Research


Based on the interplay between dopaminergic and glutamatergic systems, N-Methyl-D-Asparate (NMDA) receptor genes are thought to be involved in the pathophysiology of ADHD. However, the phenotypical correlates of brain functions associated with NMDA receptor genes and dopamine receptor genes in ADHD are yet to be investigated. We examined the diagnosis, genotype and the diagnosis-genotype interaction effects of GRIN2B and DRD4 variants on the local functional connectivity (by using the mean of static regional homogeneity (ReHo) and the mean and standard deviation (SD) of dynamic ReHo) in 67 ADHD subjects and 44 controls (aged 6–17 years). GRIN2B genotypes were divided into the C/C group and T allele carrier group; DRD4 genotypes were divided into the 2R group and non-2R group. The correlation between the ReHo values showing significant diagnosis-genotype interaction and Children’s Color Trails Test (CCTT) scores were examined. CCTT measures processing speed, sustained and divided attention. There were significant diagnosis (p < 0.001) and interaction (p = 0.02) effects of the GRIN2B variant on the static ReHo mean in the left superior parietal cluster, and the ReHo value was positively correlated with the CCTT interference score in the ADHD with T allele carrier subgroup (p = 0.012). There were significant diagnosis (p < 0.001) and interaction (p = 0.03) effects of the DRD4 variant on the dynamic ReHo SD in the right superior parietal cluster. These results suggest that alterations in the glutamate and dopamine system in ADHD may contribute to abnormalities in local functional connectivity and its dynamic repertoire in the superior parietal area, and these abnormalities would be related to dysfunction in sustained and divided attention.


Attention-deficit/hyperactivity disorder Glutamate receptor Dopamine receptor Genetics Resting state functional MRI 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015M3C7A1028926 to B.-N.K), and by the KAIST Future Systems Healthcare Project from the Ministry of Science, ICT and Future Planning (N01150030, N101050017 to B.J)

Compliance with ethical standards


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015M3C7A1028926 to B.-N.K, NRF-2016M3C7A1914448 to B.J ), and by the KAIST Future Systems Healthcare Project from the Ministry of Science, ICT and Future Planning (N11160068 to B.J).

Conflict of interest

No conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants and their guardians included in the study.

Supplementary material

11682_2017_9690_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)
11682_2017_9690_MOESM2_ESM.tif (68.9 mb)
ESM 2 (TIFF 70598 kb)
11682_2017_9690_Fig4_ESM.gif (70 kb)

High resolution image (GIF 70 kb)

11682_2017_9690_MOESM3_ESM.tiff (58 mb)
ESM 3 (TIFF 59351 kb)
11682_2017_9690_Fig5_ESM.gif (26 kb)

High resolution image (GIF 26 kb)

11682_2017_9690_MOESM4_ESM.tiff (23.1 mb)
ESM 4 (TIFF 23619 kb)
11682_2017_9690_Fig6_ESM.gif (26 kb)

High resolution image (GIF 26 kb)

11682_2017_9690_MOESM5_ESM.tiff (6.1 mb)
ESM 5 (TIFF 6279 kb)
11682_2017_9690_Fig7_ESM.gif (26 kb)

High resolution image (GIF 26 kb)

11682_2017_9690_MOESM6_ESM.tiff (8.4 mb)
ESM 6 (TIFF 8562 kb)
11682_2017_9690_Fig8_ESM.gif (27 kb)

High resolution image (GIF 26 kb)


  1. Adams, J., Crosbie, J., Wigg, K., Ickowicz, A., Pathare, T., Roberts, W., et al. (2004). Glutamate receptor, ionotropic, N-methyl D-aspartate 2A (GRIN2A) gene as a positional candidate for attention-deficit/hyperactivity disorder in the 16p13 region. Molecular Psychiatry, 9(5), 494–499.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders : DSM-IV-TR (4th ed, text revision ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic statistical manual of mental disorders : DSM-5 (5th ed.). Washington, DC: American Psychiatric Association.CrossRefGoogle Scholar
  4. An, L., Cao, Q. J., Sui, M. Q., Sun, L., Zou, Q. H., Zang, Y. F., & Wang, Y. F. (2013). Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study. Neuroscience Bulletin, 29(5), 603–613.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andersson, R., Johnston, A., & Fisahn, A. (2012). Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PloS One, 7(7), e40906.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao, Q. J., Zang, Y. F., Sun, L., Sui, M. Q., Long, X. Y., Zou, Q. H., & Wang, Y. F. (2006). Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport, 17(10), 1033–1036.CrossRefPubMedGoogle Scholar
  8. Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57(11), 1416–1423.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50(1), 81–98.CrossRefPubMedGoogle Scholar
  10. Chang, J. P., Lane, H. Y., & Tsai, G. E. (2014). Attention deficit hyperactivity disorder and N-methyl-D-aspartate (NMDA) dysregulation. Current Pharmaceutical Design, 20(32), 5180–5185.CrossRefPubMedGoogle Scholar
  11. Cheon, K. A., Kim, B. N., & Cho, S. C. (2007). Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology, 32, 1377–1383.CrossRefPubMedGoogle Scholar
  12. Cole, D. M., Smith, S. M., & Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8.PubMedPubMedCentralGoogle Scholar
  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.CrossRefPubMedGoogle Scholar
  14. D'Elia, L. F. (1996). Colors trails test: Professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  15. Deng, L., Sun, J., Cheng, L., & Tong, S. (2016). Characterizing dynamic local functional connectivity in the human brain. Scientific Reports, 6. doi: 10.1038/srep26976.
  16. Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dorval, K. M., Wigg, K. G., Crosbie, J., Tannock, R., Kennedy, J. L., Ickowicz, A., et al. (2007). Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes, Brain, and Behavior, 6(5), 444–452.CrossRefPubMedGoogle Scholar
  18. Durston, S. (2010). Imaging genetics in ADHD. NeuroImage, 53(3), 832–838.CrossRefPubMedGoogle Scholar
  19. Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., & Sklar, P. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1313–1323.CrossRefPubMedGoogle Scholar
  20. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999a). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.CrossRefPubMedGoogle Scholar
  22. Fischl, B., Sereno, M. I., & Dale, A. M. (1999b). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.CrossRefPubMedGoogle Scholar
  23. Furth, K. E., Mastwal, S., Wang, K. H., Buonanno, A., & Vullhorst, D. (2013). Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Frontiers in Cellular Neuroscience, 7, 102.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gan, L., Falzone, T. L., Zhang, K., Rubinstein, M., Baldessarini, R. J., & Tarazi, F. I. (2004). Enhance expression of dopamine D1 and glutamate NMDA receptors in dopamine D4 receptor knockout mice. Journal of Molecular Neuroscience, 22(3), 167–178.CrossRefPubMedGoogle Scholar
  25. Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: a meta-analytic review. Human Genetics, 126(1), 51–90.CrossRefPubMedGoogle Scholar
  26. Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34(5), 944–961.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38(5), 950–957.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Himelstein, J., Newcorn, J. H., & Halperin, J. M. (2000). The neurobiology of attention-deficit hyperactivity disorder. Frontiers in Bioscience, 5, D461–D478.CrossRefPubMedGoogle Scholar
  29. Hudetz, A. G., Liu, X., & Pillay, S. (2015). Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connectivity, 5(1), 10–22.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage, 80, 360–378.CrossRefPubMedGoogle Scholar
  31. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980–988.CrossRefPubMedGoogle Scholar
  32. Kim, Y. S., Cheon, K. A., Kim, B. N., Chang, S. A., Yoo, H. J., Kim, J. W., et al. (2004). The reliability and validity of kiddie-schedule for affective disorders and schizophrenia-present and lifetime version- Korean version (K-SADS-PL-K). Yonsei Medical Journal, 45(1), 81–89.CrossRefPubMedGoogle Scholar
  33. Kim, B., Koo, M. S., Jun, J. Y., Park, I. H., Oh, D. Y., & Cheon, K. A. (2009). Association between dopamine D4 receptor gene polymorphism and scores on a continuous performance test in Korean children with attention deficit hyperactivity disorder. Psychiatry Investigation, 6, 216–221.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim, J.I., Kim, J.W., Park, S., Hong, S.B., Lee, D.S., Paek, S.H., et al. (2016). The GRIN2B and GRIN2A gene variants are associated with continuous performance test variables in ADHD. Journal of Attention Disorders. doi: 10.1177/1087054716649665.
  35. Kim JI, Kim JW, Park JE, Park S, Hong SB, Han DH, Cheong JH, Choi JW, Lee S, Kim BN. (2017). Association of the GRIN2B rs2284411 polymorphism with methylphenidate response in attentiondeficit/ hyperactivity disorder. J Psychopharmacol. doi: 10.1177/0269881116667707.
  36. Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2016). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex. doi: 10.1093/cercor/bhw029.Google Scholar
  37. LaHoste, G. J., Swanson, J. M., Wigal, S. B., Glabe, C., Wigal, T., King, N., & Kennedy, J. L. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry, 1(2), 121–124.PubMedGoogle Scholar
  38. Leopold, D. A., Murayama, Y., & Logothetis, N. K. (2003). Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cerebral Cortex, 13(4), 422–433.CrossRefPubMedGoogle Scholar
  39. Lesch, K. P., Merker, S., Reif, A., & Novak, M. (2013). Dances with black widow spiders: dysregulation of glutamate signalling enters Centre stage in ADHD. European Neuropsychopharmacology, 23(6), 479–491.CrossRefPubMedGoogle Scholar
  40. Leung, P. W., Lee, C. C., Hung, S. F., Ho, T. P., Tang, C. P., Kwong, S. L., et al. (2005). Dopamine receptor D4 (DRD4) gene in Han Chinese children with attention-deficit/hyperactivity disorder (ADHD): increased prevalence of the 2-repeat allele. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 133B(1), 54–56.CrossRefGoogle Scholar
  41. Li, D., Sham, P. C., Owen, M. J., & He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15(14), 2276–2284.CrossRefPubMedGoogle Scholar
  42. Lichter, J. B., Barr, C. L., Kennedy, J. L., Van Tol, H. H., Kidd, K. K., & Livak, K. J. (1993). A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Human Molecular Genetics, 2(6), 767–773.CrossRefPubMedGoogle Scholar
  43. Ludwig, K. U., Roeske, D., Herms, S., Schumacher, J., Warnke, A., Plume, E., et al. (2010). Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(2), 503–511.CrossRefGoogle Scholar
  44. Mascheretti, S., Facoetti, A., Giorda, R., Beri, S., Riva, V., Trezzi, V., et al. (2015). GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia. Psychiatric Genetics, 25(1), 9–20.CrossRefPubMedGoogle Scholar
  45. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529–540.CrossRefPubMedGoogle Scholar
  46. Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., & Malach, R. (2007). Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Current Biology, 17(15), 1275–1285.CrossRefPubMedGoogle Scholar
  47. Nir, Y., Mukamel, R., Dinstein, I., Privman, E., Harel, M., Fisch, L., et al. (2008). Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nature Neuroscience, 11(9), 1100–1108.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Park, K.S., Yoon, J.Y., Park, H.J., Kwon, K.U. (1996). Development of KEDI-WSIC, individual intelligence test for Korean children Seoul: Korean educational development institute.Google Scholar
  49. Reist, C., Ozdemir, V., Wang, E., Hashemzadeh, M., Mee, S., & Moyzis, R. (2007). Novelty seeking and the dopamine D4 receptor gene (DRD4) revisited in Asians: haplotype characterization and relevance of the 2-repeat allele. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B(4), 453–457.CrossRefGoogle Scholar
  50. Rubinstein, M., Cepeda, C., Hurst, R. S., Flores-Hernandez, J., Ariano, M. A., Falzone, T. L., et al. (2001). Dopamine D4 receptor-deficient mice display cortical hyperexcitability. The Journal of Neuroscience, 21, 3756–3763.PubMedGoogle Scholar
  51. Seamans, J. K., Gorelova, N., Durstewitz, D., & Yang, C. R. (2001). Bidirectional modulation of GABAergic inhibition in prefrontal cortical neurons. The Journal of Neuroscience, 21(1), 3628–3628.PubMedGoogle Scholar
  52. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., & Jan, L. Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 368(6467), 144–147.CrossRefPubMedGoogle Scholar
  53. Shin, M. S., & Koo, H. J. (2008). A standardization study of children's color trails test (CCTT). Journal of the Korean Academy of Child and Adolescent Psychiatry, 19, 28–37.Google Scholar
  54. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158–165.CrossRefPubMedGoogle Scholar
  55. Silver, M., Montana, G., & Nichols, T. E. (2011). False positives in neuroimaging genetics using voxel-based morphometry data. NeuroImage, 54, 992–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spadone, S., Della Penna, S., Sestieri, C., Betti, V., Tosoni, A., Perrucci, M. G., et al. (2015). Dynamic reorganization of human resting-state networks during visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8112–8117.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Swanson, J. M., Sunohara, G. A., Kennedy, J. L., Regino, R., Fineberg, E., Wigal, T., et al. (1998). Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Molecular Psychiatry, 3(1), 38–41.CrossRefPubMedGoogle Scholar
  58. Tomasi, D., & Volkow, N. D. (2012). Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biological Psychiatry, 71(5), 443–450.CrossRefPubMedGoogle Scholar
  59. Tseng, K. Y., & O’Donnell, P. (2004). Dopamine-glutamate interactions controlling prefrontal pyramidal cell excitability involve multiple signaling mechanisms. The Journal of Neuroscience, 24(22), 5131–5139.CrossRefPubMedGoogle Scholar
  60. Wang, X., Zhong, P., Gu, Z., & Yan, Z. (2003). Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. The Journal of Neuroscience, 23(30), 9852–9861.PubMedGoogle Scholar
  61. Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage, 91, 412–419.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Mental Health and Behavioral Medicine Services for Clinical DepartmentsSeoul National University Bundang HospitalSeongnamRepublic of Korea
  2. 2.Computational Affective Neuroscience and Development Laboratory, Graduate School of Medical Science and EngineeringKAISTDaejeonRepublic of Korea
  3. 3.KI for Health Science and Technology, KAIST InstituteDaejeonRepublic of Korea
  4. 4.Division of Child and Adolescent Psychiatry, Department of PsychiatrySeoul National University College of MedicineSeoul,Republic of Korea

Personalised recommendations