Brain Imaging and Behavior

, Volume 12, Issue 1, pp 127–141 | Cite as

Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients

  • Roberto Esposito
  • Filippo Cieri
  • Piero Chiacchiaretta
  • Nicoletta Cera
  • Mariella Lauriola
  • Massimo Di Giannantonio
  • Armando Tartaro
  • Antonio Ferretti
Original Research

Abstract

Resting state brain activity incorporates different components, including the Default Mode Network and the Dorsal Attention Network, also known as task-negative network and task-positive network respectively. These two networks typically show an anticorrelated activity during both spontaneous oscillations and task execution. However modifications of this anticorrelated activity pattern with age and pathology are still unclear. The present study aimed to investigate differences in resting state Default Mode Network-Dorsal Attention Network functional anticorrelation among young adults, healthy elders and Mild Cognitive Impairment patients. We retrospectively enrolled in this study 27 healthy young adults (age range: 25–35 y.o.; mean age: 28,5), 26 healthy elders (age range: 61–72 y.o.; mean age: 65,1) and 17 MCI patients (age range 64–87 y.o.; mean age: 73,6). Mild Cognitive Impairment patients were selected following Petersen criteria. All participants underwent neuropsychological evaluation and resting state functional Magnetic Resonance Imaging. Spontaneous anticorrelated activity between Default Mode Network and Dorsal Attention Network was observed in each group. This anticorrelation was significantly decreased with age in most Default Mode Network-Dorsal Attention Network connections (p < 0.001, False Discovery Rate corrected). Moreover, the anticorrelation between the posterior cingulate cortex node of the Default Mode Network and the right inferior parietal sulcus node of the Dorsal Attention Network was significantly decreased when comparing Mild Cognitive Impairment with normal elders (p < 0.001, False Discovery Rate corrected). The functional connectivity changes in patients were not related to significant differences in grey matter content. Our results suggest that a reduced anticorrelated activity between Default Mode Network and Dorsal Attention Network is part of the normal aging process and that Mild Cognitive Impairment status is associated with more evident inter-networks functional connectivity changes.

Keywords

Aging Default mode network Dorsal attention network Mild cognitive impairment Resting state functional anticorrelations 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Institutional and Ethics Committee of the University “G. d’Annunzio” of Chieti-Pescara (clinical trial registration number: 1711). All participants gave written informed consent to join the study.

References

  1. Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alnæs, D., Kaufmann, T., Richard, G., Duff, E. P., Sneve, M. H., Endestad, T., et al. (2015). Attentional load modulates large-scale functional brain connectivity beyond the core attention networks. NeuroImage, 109, 260–272.PubMedCrossRefGoogle Scholar
  3. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bae, J. N., Macfall, J. R., Krishnan, K. R., Payne, M. E., Steffens, D. C., & Taylor, W. D. (2006). Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biological Psychiatry, 60(12), 1356–1363.PubMedCrossRefGoogle Scholar
  5. Bai, F., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., & Zhang, Z. (2009). Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Research, 1302, 167–174.PubMedCrossRefGoogle Scholar
  6. Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Developmental changes in within- and between-network connectivity between late childhood and adulthood. Neuropsychologia, 51(1), 156–167.PubMedCrossRefGoogle Scholar
  7. Baron, J. C., Chételat, G., Desgranges, B., Perchey, G., Landeau, B., de la Sayette, V., et al. (2001). In vivo mapping of grey matter loss with voxel-based morphometric in mild Alzheimer's disease. NeuroImage, 14(2), 298–309.PubMedCrossRefGoogle Scholar
  8. Behrman-Lay, A. M., Usher, C., Conturo, T. E., Correia, S., Laidlaw, D. H., Lane, E.M., et al. (2014). Fiber bundle length and cognition: A length-based tractography MRI study. Brain Imaging Behav.Google Scholar
  9. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960–969.PubMedCrossRefGoogle Scholar
  11. Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D. M., Benzinger, T. L., et al. (2014). Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiology of Aging, 35(4), 757–768.PubMedCrossRefGoogle Scholar
  12. Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 7(12), 648–665.CrossRefGoogle Scholar
  13. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedCrossRefGoogle Scholar
  14. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 29(6), 1860–1873.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. The Journal of Neuroscience, 26(40), 10222–10231.PubMedCrossRefGoogle Scholar
  16. Chai, X. J., Castañón, A. N., Ongür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 1420–1428.PubMedCrossRefGoogle Scholar
  17. Chai, X. J., Ofen, N., Gabrieli, J. D., & Whitfield-Gabrieli, S. (2014). Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. Journal of Cognitive Neuroscience, 26(3), 501–513.PubMedCrossRefGoogle Scholar
  18. Chételat, G., Landeau, B., Eustache, F., Mézenge, F., Viader, F., de la Sayette, V., et al. (2005). Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage, 27(4), 934–946.PubMedCrossRefGoogle Scholar
  19. Clarke, R., & Johnstone, T. (2013). Prefrontal inhibition of threat processing reduces working memory interference. Frontiers in Human Neuroscience, 7, 228.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215 Review.PubMedCrossRefGoogle Scholar
  21. Crone, J. S., Schurz, M., Höller, Y., Bergmann, J., Monti, M., Schmid, E., et al. (2015). Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. NeuroImage, 10, 101–109.CrossRefGoogle Scholar
  22. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof, F., Scheltens, P., Stam, C. J., et al. (2008). Reduced resting-state brain activity in the "default network" in normal aging. Cerebral Cortex, 18(8), 1856–1864.PubMedCrossRefGoogle Scholar
  24. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209.PubMedCrossRefGoogle Scholar
  25. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367.PubMedCrossRefGoogle Scholar
  26. Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12(1), 43–56 Review.PubMedCrossRefGoogle Scholar
  27. Dirnberger, G., Lang, W., & Lindinger, G. (2010). Differential effects of age and executive functions on the resolution of the contingent negative variation: a reexamination of the frontal aging theory. Age (Dordrecht, Netherlands), 32(3), 323–335.CrossRefGoogle Scholar
  28. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H., Vickers, J., et al. (2007). Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain, 130(Pt 9), 2375–2386.PubMedCrossRefGoogle Scholar
  30. Esposito, R., Mosca, A., Pieramico, V., Cieri, F., Cera, N., & Sensi, S. L. (2013). Characterization of resting state activity in MCI individuals. PeerJ, 1, e135.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience and Biobehavioral Reviews, 37(3), 384–400.PubMedCrossRefGoogle Scholar
  32. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7209–7214.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Filippini, N., Nickerson, L. D., Beckmann, C. F., Ebmeier, K. P., Frisoni, G. B., Matthews, P. M., et al. (2012). Age-related adaptations of brain function during a memory task are also present at rest. NeuroImage, 59(4), 3821–3828.PubMedCrossRefGoogle Scholar
  34. Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., et al. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B. (2014). Alzheimer's Disease Neuroimaging Initiative. 2014. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117: 20–40.Google Scholar
  36. Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009). Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups. NeuroImage, 47(4), 1678–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10046–10051.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611–621.PubMedCrossRefGoogle Scholar
  40. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.PubMedCrossRefGoogle Scholar
  41. Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44(14), 2836–2845.PubMedCrossRefGoogle Scholar
  42. Gao, W., Gilmore, J. H., Shen, D., Smith, J. K., Zhu, H., & Lin, W. (2013). The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cerebral Cortex, 23(3), 594–603.PubMedCrossRefGoogle Scholar
  43. Gardini, S., Venneri, A., Sambataro, F., Cuetos, F., Fasano, F., Marchi, M., et al. (2015). Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance. Journal of Alzheimer's Disease, 45(2), 457–470.PubMedGoogle Scholar
  44. Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., Frith, C. D., et al. (2006). Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932–948.PubMedCrossRefGoogle Scholar
  45. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36.PubMedCrossRefGoogle Scholar
  46. Gopinath, K., Krishnamurthy, V., Cabanban, R., & Crosson, B. A. (2015). Hubs of anticorrelation in high-resolution resting-state functional connectivity network architecture. Brain Connectivity, 5(5), 267–275.PubMedCrossRefGoogle Scholar
  47. Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. The Journal of Neuroscience, 23(3), 986–993.PubMedGoogle Scholar
  48. Greene, S. J., & Killiany, R. J. (2010). Alzheimer's disease neuroimaging initiative. Neurobiology of Aging, 31(8), 1304–1311.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a net- work analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  50. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedCrossRefGoogle Scholar
  51. Gröschel, S., Sohns, J. M., Schmidt-Samoa, C., Baudewig, J., Becker, L., Dechent, P., et al. (2013). Effects of age on negative BOLD signal changes in the primary somatosensory cortex. NeuroImage, 71, 10–18.PubMedCrossRefGoogle Scholar
  52. Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, 28(8), 1051–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage, 105, 525–535.PubMedCrossRefGoogle Scholar
  54. Ishibashi, K., Onishi, A., Fujiwara, Y., Ishiwata, K., & Ishii, K. (2015). Relationship between Alzheimer disease-like pattern of 18F-FDG and fasting plasma glucose levels in cognitively normal volunteers. Journal of Nuclear Medicine, 56(2), 229–233.PubMedCrossRefGoogle Scholar
  55. Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. The Journal of Neuroscience, 32(48), 17382–17390.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J. D., & Whitfield-Gabrieli, S. (2015). Resting-state anticorrelations between medial and lateral prefrontal cortex: association with working memory, aging, and individual differences. Cortex, 64, 271–280.PubMedCrossRefGoogle Scholar
  57. Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537.PubMedCrossRefGoogle Scholar
  58. Kottlow, M., Schlaepfer, A., Baenninger, A., Michels, L., Brandeis, D., & Koenig, T. (2015). Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention. Frontiers in Behavioral Neuroscience, 9, 111.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535–540.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 12–32.PubMedCrossRefGoogle Scholar
  61. Lei, X., Wang, Y., Yuan, H., & Mantini, D. (2014). Neuronal oscillations and functional interactions between resting state networks. Human Brain Mapping, 35(7), 3517–3528.PubMedCrossRefGoogle Scholar
  62. Li, X., Pu, F., Fan, Y., Niu, H., Li, S., & Li, D. (2013). Age-related changes in brain structural covariance networks. Frontiers in Human Neuroscience, 7, 98.PubMedPubMedCentralGoogle Scholar
  63. Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., & Zuo, X. N. (2014). Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies. Human Brain Mapping, 36(3), 1217–1232.PubMedCrossRefGoogle Scholar
  64. Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PloS One, 6(7), e22153.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liang, P., Wang, Z., Yang, Y., & Li, K. (2012). Three subsystems of the inferior parietal cortex are differently affected in mild cognitive impairment. Journal of Alzheimer's Disease, 30(3), 475–487.PubMedGoogle Scholar
  66. Liang, P., Li, Z., Deshpande, G., Wang, Z., Hu, X., & Li, K. (2014). Altered causal connectivity of resting state brain networks in amnesic MCI. PloS One, 9(3), e88476.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liang, X., Zou, Q., He, Y., & Yang, Y. (2015). Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cerebral Cortex, 26, 1501–1511.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lin, P., Yang, Y., Jovicich, J., De Pisapia, N., Wang, X., Zuo, C. S., et al. (2015). Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance. Brain Imaging and Behavior, 10, 212–225.CrossRefGoogle Scholar
  69. Luo, C., Qiu, C., Guo, Z., Fang, J., Li, Q., Lei, X., et al. (2011). Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PloS One, 7(1), e28196.PubMedCrossRefGoogle Scholar
  70. McCarthy, P., Benuskova, L., & Franz, E. A. (2014). The age-related posterior-anterior shift as revealed by voxelwise analysis of functional brain networks. Frontiers in Aging Neuroscience, 6, 301.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mevel, K., Landeau, B., Fouquet, M., La Joie, R., Villain, N., Mézenge, F., et al. (2013). Age effect on the default mode network, inner thoughts, and cognitive abilities. Neurobiology of Aging, 34(4), 1292–1301.PubMedCrossRefGoogle Scholar
  72. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655–663.PubMedCrossRefGoogle Scholar
  73. Mowinckel, A. M., Espeseth, T., & Westlye, L. T. (2012). Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. NeuroImage, 63(3), 1364–1373.PubMedCrossRefGoogle Scholar
  74. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.PubMedCrossRefGoogle Scholar
  75. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268.CrossRefGoogle Scholar
  76. Ouchi, Y., & Kikuchi, M. (2012). A review of the default mode network in aging and dementia based on molecular imaging. Reviews in the Neurosciences, 23(3), 263–268.PubMedCrossRefGoogle Scholar
  77. Passow, S., Specht, K., Adamsen, T. C., Biermann, M., Brekke, N., Craven, A. R., et al. (2015). Default-mode network functional connectivity is closely related to metabolic activity. Human Brain Mapping, 36(6), 2027–2038.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Petersen, R., & Negash, S. (2008). Mild cognitive impairment: an overview. CNS Spectrums, 13(01), 45–53.PubMedCrossRefGoogle Scholar
  79. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Petrella, J. R., Wang, L., Krishnan, S., Slavin, M. J., Prince, S. E., Tran, T. T., et al. (2007). Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology, 245(1), 224–235.PubMedCrossRefGoogle Scholar
  81. Power, J. D., Barnes, K. A., Snyder, A. Z, Schlaggar, B.L., Petersen, S.E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154.Google Scholar
  82. Price, J. L., McKeel Jr., D. W., Buckles, V. D., Roe, C. M., Xiong, C., Grundman, M., et al. (2009). Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 1026–1036.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., & Li, K. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage, 50(1), 48–55.PubMedCrossRefGoogle Scholar
  84. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews. Neurology, 7(3), 137–152.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Risacher, S. L., Saykin, A. J., West, J. D., Shen, L., Firpi, H. A., & McDonald, B. C. (2009). Alzheimer's disease neuroimaging initiative (ADNI). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Current Alzheimer Research, 6(4), 347–361.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., et al. (2010). Age-related alterations in default mode network: impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.PubMedCrossRefGoogle Scholar
  88. Sauseng, P., Feldheim, J. F., Freunberger, R., & Hummel, F. C. (2011). Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention. Frontiers in Psychology, 2, 241.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Savva, G. M., Wharton, S. B., Ince, P. G., Forster, G., Matthews, F. E., & Brayne, C. (2009). Medical Research Council cognitive function and ageing study. Age, neuropathology, and dementia. The New England Journal of Medicine, 360(22), 2302–2309.PubMedCrossRefGoogle Scholar
  90. Schroeter, M. L., Stein, T., Maslowski, N., & Neumann, J. (2009). Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. NeuroImage, 47(4), 1196–1206.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Segall, J. M., Allen, E. A., Jung, R. E., Erhardt, E. B., Arja, S. K., Kiehl, K., et al. (2012). Correspondence between structure and function in the human brain at rest. Frontiers in Neuroinformatics, 6, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Silver, M. A., & Kastner, S. (2009). Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences, 13(11), 488–495.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219.PubMedCrossRefGoogle Scholar
  94. Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., et al. (2014). Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connectivity, 4(9), 662–676.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sperling, R. A., Laviolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki, M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63, 178–188.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510.PubMedCrossRefGoogle Scholar
  97. Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. NeuroImage, 52, 290–301.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Trelle, A. (2014). Decoding the role of the angular gyrus in the subjective experience of recollection. The Journal of Neuroscience, 34(43), 14167–14169.PubMedCrossRefGoogle Scholar
  99. Uddin, L. Q., Kelly, A. M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637.PubMedCrossRefGoogle Scholar
  100. Van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.PubMedCrossRefGoogle Scholar
  101. Van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.PubMedCrossRefGoogle Scholar
  102. Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., et al. (2015). Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. Journal of Alzheimer's Disease, 45(3), 745–756.PubMedGoogle Scholar
  103. Vidal-Piñeiro, D., Valls-Pedret, C., Fernández-Cabello, S., Arenaza-Urquijo, E. M., Sala-Llonch, R., Solana, E., et al. (2014). Decreased default mode network connectivity correlates with age-associated structural and cognitive changes. Frontiers in Aging Neuroscience, 6, 256.PubMedPubMedCentralGoogle Scholar
  104. Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150–159.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., et al. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. NeuroImage, 31(2), 496–504.PubMedCrossRefGoogle Scholar
  106. Wang, L., Su, L., Shen, H., & Hu, D. (2012). Decoding lifespan changes of the human brain using resting-state functional connectivity MRI. PloS One, 7(8), e44530.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weiler, M., Teixeira, C. V., Nogueira, M. H., de Campos, B. M., Damasceno, B. P., Cendes, F., et al. (2014). Differences and the relationship in default mode network intrinsic activity and functional connectivity in mild Alzheimer's disease and amnestic mild cognitive impairment. Brain Connectivity, 4(8), 567–574.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., & Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage, 47(4), 1408–1416.PubMedCrossRefGoogle Scholar
  109. Wen, X., Liu, Y., Yao, L., & Ding, M. (2013). Top-down regulation of default mode activity in spatial visual attention. The Journal of Neuroscience, 33(15), 6444–6453.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wendelken, C. (2015). Meta-analysis: how does posterior parietal cortex contribute to reasoning? Frontiers in Human Neuroscience, 8, 1042.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wu, J. T., Wu, H. Z., Yan, C. G., Chen, W. X., Zhang, H. Y., He, Y., et al. (2011). Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neuroscience Letters, 504(1), 62–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Roberto Esposito
    • 1
    • 2
  • Filippo Cieri
    • 1
  • Piero Chiacchiaretta
    • 1
    • 2
    • 3
  • Nicoletta Cera
    • 4
  • Mariella Lauriola
    • 1
  • Massimo Di Giannantonio
    • 1
  • Armando Tartaro
    • 1
    • 2
  • Antonio Ferretti
    • 1
    • 2
    • 3
  1. 1.Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. d’Annunzio” of Chieti-PescaraChietiItaly
  2. 2.Institute for Advanced Biomedical TechnologiesUniversity “G. d’Annunzio” of Chieti-PescaraChietiItaly
  3. 3.Bioengineering UnitIRCCS NEUROMEDPozzilliItaly
  4. 4.Faculty of Psychology and Educational ScienceUniversity of PortoPortoPortugal

Personalised recommendations